pandas分组聚合技巧与方法详解
来到golang学习网的大家,相信都是编程学习爱好者,希望在这里学习文章相关编程知识。下面本篇文章就来带大家聊聊《Python pandas数据分组聚合方法》,介绍一下,希望对大家的知识积累有所帮助,助力实战开发!
Pandas的groupby()可按列分组数据并应用聚合函数如sum、mean等,支持多级分组、agg多种聚合、transform组内转换及apply自定义函数,默认排除NaN值,可用fillna填充,结合sort_values和head可获取每组前N条,transform还能将结果合并回原DataFrame。

Pandas 中使用 groupby() 方法可以轻松实现数据分组,然后配合聚合函数进行统计分析。这是一种非常强大的数据处理工具,能让你快速了解数据的不同维度。
解决方案
Pandas 的 groupby() 函数允许你根据一个或多个列的值对 DataFrame 进行分组。分组后,你可以对每个组应用聚合函数,例如 sum(), mean(), count(), min(), max() 等。
以下是一些常用的 Pandas 分组聚合操作示例:
import pandas as pd
# 创建一个示例 DataFrame
data = {'Category': ['A', 'A', 'B', 'B', 'A', 'C', 'C'],
'Value': [10, 15, 20, 25, 12, 30, 35],
'City': ['Beijing', 'Shanghai', 'Beijing', 'Shanghai', 'Guangzhou', 'Shanghai', 'Guangzhou']}
df = pd.DataFrame(data)
# 按照 'Category' 列进行分组,并计算每组 'Value' 的总和
grouped_sum = df.groupby('Category')['Value'].sum()
print("按照 Category 分组求和:\n", grouped_sum)
# 按照 'Category' 列进行分组,并计算每组 'Value' 的平均值
grouped_mean = df.groupby('Category')['Value'].mean()
print("\n按照 Category 分组求平均值:\n", grouped_mean)
# 按照 'Category' 和 'City' 列进行分组,并计算每组 'Value' 的总和
grouped_multi = df.groupby(['Category', 'City'])['Value'].sum()
print("\n按照 Category 和 City 分组求和:\n", grouped_multi)
# 使用 agg 函数进行多种聚合操作
grouped_agg = df.groupby('Category')['Value'].agg(['sum', 'mean', 'count'])
print("\n使用 agg 函数进行多种聚合操作:\n", grouped_agg)
# 对不同的列应用不同的聚合函数
grouped_diff_agg = df.groupby('Category').agg({'Value': 'sum', 'City': 'nunique'})
print("\n对不同的列应用不同的聚合函数:\n", grouped_diff_agg)
# 使用 transform 进行组内转换
df['Category_Mean'] = df.groupby('Category')['Value'].transform('mean')
print("\n使用 transform 进行组内转换:\n", df)
# 使用 apply 应用自定义函数
def custom_function(x):
return x.max() - x.min()
grouped_apply = df.groupby('Category')['Value'].apply(custom_function)
print("\n使用 apply 应用自定义函数:\n", grouped_apply)Pandas 分组后如何处理缺失值 (NaN)?
在分组聚合操作中,如果数据包含缺失值 (NaN),groupby() 默认会将 NaN 值排除在外。这意味着 NaN 值不会参与到聚合计算中。
- 排除 NaN (默认行为):
groupby()默认跳过 NaN 值。 如果一个组内的所有值都是 NaN,那么聚合结果也会是 NaN。 - 填充 NaN: 你可以在分组之前使用
fillna()方法填充 NaN 值。例如,使用组内的平均值或中位数填充。
import pandas as pd
import numpy as np
data = {'Category': ['A', 'A', 'B', 'B', 'A'],
'Value': [10, np.nan, 20, 25, 12]}
df = pd.DataFrame(data)
# 默认行为:排除 NaN
grouped_sum = df.groupby('Category')['Value'].sum()
print("排除 NaN:\n", grouped_sum)
# 填充 NaN 值 (使用组内平均值)
df['Value'] = df.groupby('Category')['Value'].transform(lambda x: x.fillna(x.mean()))
grouped_sum_filled = df.groupby('Category')['Value'].sum()
print("\n填充 NaN 后求和:\n", grouped_sum_filled)如何对分组后的数据进行排序,并获取每组的前 N 个值?
有时候,你需要对每个分组内的数据进行排序,然后提取每组的前 N 个值。 这在很多场景下都很有用,例如找出每个类别下销量最高的前几名产品。
import pandas as pd
data = {'Category': ['A', 'A', 'A', 'B', 'B', 'B'],
'Value': [10, 15, 5, 20, 25, 18]}
df = pd.DataFrame(data)
# 按照 Category 分组,并对 Value 降序排序,获取每组的前 2 个值
def top_n(df, n=2):
return df.sort_values(by='Value', ascending=False).head(n)
top_2 = df.groupby('Category').apply(top_n)
print(top_2)
# 如果想重置索引,可以这样做
top_2 = df.groupby('Category').apply(top_n).reset_index(drop=True)
print("\n重置索引后:\n", top_2)分组聚合后,如何将结果合并回原始 DataFrame?
transform() 函数非常适合这种场景。 它可以将聚合后的结果广播回原始 DataFrame,保持索引对齐。
import pandas as pd
data = {'Category': ['A', 'A', 'B', 'B', 'A'],
'Value': [10, 15, 20, 25, 12]}
df = pd.DataFrame(data)
# 计算每个 Category 的平均值,并将结果合并回原始 DataFrame
df['Category_Mean'] = df.groupby('Category')['Value'].transform('mean')
print(df)这个方法避免了手动合并的麻烦,而且效率很高。transform() 保持了 DataFrame 的结构,使得后续分析更加方便。
终于介绍完啦!小伙伴们,这篇关于《pandas分组聚合技巧与方法详解》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!
学习通签到记录查询方法
- 上一篇
- 学习通签到记录查询方法
- 下一篇
- 前端验证后如何调用Servlet?
-
- 文章 · python教程 | 1小时前 |
- Python如何重命名数据列名?columns教程
- 165浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- 异步Python机器人如何非阻塞运行?
- 216浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python排序忽略大小写技巧详解
- 325浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python列表引用与复制技巧
- 300浏览 收藏
-
- 文章 · python教程 | 3小时前 | 数据处理 流处理 PythonAPI PyFlink ApacheFlink
- PyFlink是什么?Python与Flink结合解析
- 385浏览 收藏
-
- 文章 · python教程 | 3小时前 | sdk 邮件API requests库 smtplib Python邮件发送
- Python发送邮件API调用方法详解
- 165浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Pandasmerge_asof快速匹配最近时间数据
- 254浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- 列表推导式与生成器表达式区别解析
- 427浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Pythonopen函数使用技巧详解
- 149浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python合并多个列表的几种方法
- 190浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3190次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3402次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3433次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4540次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3811次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

