深入浅析,一步步用GPT打造你的聊天机器人
一分耕耘,一分收获!既然都打开这篇《深入浅析,一步步用GPT打造你的聊天机器人》,就坚持看下去,学下去吧!本文主要会给大家讲到等等知识点,如果大家对本文有好的建议或者看到有不足之处,非常欢迎大家积极提出!在后续文章我会继续更新科技周边相关的内容,希望对大家都有所帮助!
与ChatGPT聊天很有趣,而且信息量很大 —— 与它闲聊可以探索一些新的想法。但这些都是比较随意的用例,新奇感很快就会减弱,特别是当人意识到它能产生幻觉的时候。
如何以更高效的方式使用ChatGPT呢?在OpenAI发布GPT3.5系列API后,可以做的事情远不止是闲聊。QA(问答)是企业和个人使用的一个非常有效的用例 —— 用自然语言向机器人询问自己的文件/数据,它可以通过从文件中检索信息并生成回应来快速回答。可以把它用于客户支持、综合用户研究、个人知识管理等等。
向机器人询问与文件相关的问题。使用稳定扩散法生成的图像。
本文将探讨如何根据自己的数据建立问答聊天机器人,包括为什么有些方法行不通,以及如何利用llama-index和GPT API以高效的方式建立一个文档问答聊天机器人的步骤指南。
(如果只想知道如何建立问答聊天机器人,可以直接跳到“逐步建立文档问答聊天机器人”部分)
探索不同的方法
当ChatGPT问世时,可以想到把它作为自己工作的一个助手,从而节省自己的时间和精力等。
首先想到的是用自己的数据对GPT模型进行微调来实现这个目标。但是,微调需要花费相当多的钱,而且需要一个有实例的大数据集。也不可能在文件有变化时每次都进行微调。更为关键的一点是,微调根本不可能让模型“知道”文档中的所有信息,而是要教给模型一种新的技能。因此,对于(多)文档质量保证来说,微调并不是一个好办法。
第二个方法是通过在提示中提供上下文来进行提示工程。例如,可以在实际问题之前附加原始文档内容,而不是直接问问题。但是GPT模型的注意力是有限的 —— 它只能接受提示中的几千字(大约4000个标记或3000字)。只要有成千上万的客户反馈邮件和数百个产品文档,就不可能给它提示中的所有背景。如果向API传递一个长的上下文,也是很昂贵的,因为定价是基于使用的代币的数量。
I will ask you questions based on the following context: — Start of Context — YOUR DOCUMENT CONTENT — End of Context— My question is: “What features do users want to see in the app?”
由于提示符对输入标记的数量有限制,想出了这样一个主意来解决问题:首先使用一种算法来搜索文档并挑选出相关的摘录,然后只将这些相关的语境与问题一起传递给GPT模型。在过程中需要使用一个简单、便捷的gpt-index(现在改名为LlamaIndex)的库。
从文件中提取相关部分,然后将其反馈给提示。
在下一节中,将给出一个使用LlamaIndex和GPT在自己的数据上建立一个问答聊天机器人的分步教程。
逐步建立文档问答聊天机器人
在这一节中,将用LlamaIndex和GPT(text-davinci-003)在现有文档的基础上建立一个问答聊天机器人,这样就可以用自然语言提出关于文档的问题,并从聊天机器人那里得到答案。
前提条件
在开始本教程之前,需要做一些准备:
- OpenAI API密钥,可以在https://platform.openai.com/account/api-keys找到。
- 一个文件数据库。LlamaIndex支持许多不同的数据源,如Notion、Google Docs、Asana等。在本文中将只使用一个简单的文本文件进行演示。
- 一个本地的Python环境或一个在线的Google Colab笔记本。
工作流程
工作流程很简单,只需要几个步骤:
- 1.用LlamaIndex为你的文档数据建立一个索引。
- 2.用自然语言查询该索引。
- 3.LlamaIndex将检索相关部分并将其传递给GPT提示。
- 4.向GPT询问相关的上下文并构建一个回应。
LlamaIndex所做的是将原始文档数据转换成一个矢量的索引,这对查询来说是非常有效的。它将使用这个索引,根据查询和数据的相似性,找到最相关的部分。然后,它将把检索到的内容插入到它将发送给GPT的提示中,这样GPT就有了回答问题的背景。
设置
首先需要安装库。只需在终端或谷歌Colab笔记本上运行以下命令。这些命令将同时安装LlamaIndex和OpenAI。
!pip install llama-index !pip install openai
接下来将在python中导入这些库,并在一个新的.py文件中设置OpenAI API密钥。
# 导入必要的库 from llama_index import GPTSimpleVectorIndex, Document, SimpleDirectoryReader import os os.environ['OPENAI_API_KEY'] = 'sk-YOUR-API-KEY'
构建索引并保存
在安装了所需的库并将其导入后,将需要构建一个文档的索引。
为了加载文档,可以使用LllamaIndex提供的SimpleDirectoryReader方法,或者可以从字符串中加载它。
# 从一个目录中加载 documents = SimpleDirectoryReader('your_directory').load_data() # 从字符串中加载,假设将数据保存为字符串text1,text2,... text_list = [text1, text2, ...] documents = [Document(t) for t in text_list]
LlamaIndex还提供各种数据连接器,包括Notion、Asana、Google Drive、Obsidian等。可以在https://llamahub.ai/找到可用的数据连接器。
加载完文档后,就可以用以下方法简单地构建索引了:
# 构建一个简单的向量索引 index = GPTSimpleVectorIndex(documents)
如果想保存索引并加载它以便将来使用,可以使用以下方法:
# 将索引保存在`index.json`文件中 index.save_to_disk('index.json') # 从保存的`index.json`文件中加载索引 index = GPTSimpleVectorIndex.load_from_disk('index.json')
查询索引并获得响应
查询索引很简单:
# 查询索引 response = index.query("What features do users want to see in the app?") print(response)
一个回应的例子。
然后就可以得到答案了。在幕后,LlamaIndex将接收提示,在索引中搜索相关块,并将提示和相关块传递给GPT。
一些高级用法的说明
上面的步骤只是展示了使用LlamaIndex和GPT回答问题的一个非常简单的入门用法。但可以做得比这更多。事实上,可以配置LlamaIndex来使用不同的大型语言模型(LLM),为不同的任务使用不同类型的索引,用一个新的索引来更新现有的索引,等等。如果有兴趣,可以在https://gpt-index.readthedocs.io/en/latest/index.html,阅读他们的文档。
总结
本文中展示了如何结合使用GPT和LlamaIndex来构建一个文档问答聊天机器人。虽然GPT(和其他LLM)本身就很强大,但如果把它与其他工具、数据或流程结合起来,它的力量也会被大大增强。
终于介绍完啦!小伙伴们,这篇关于《深入浅析,一步步用GPT打造你的聊天机器人》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

- 上一篇
- 微软正在通过游戏按钮为 Edge 添加更多膨胀

- 下一篇
- ChatGPT背后真正的英雄:OpenAI首席科学家Ilya Sutskever的信仰之跃
-
- 科技周边 · 人工智能 | 32分钟前 |
- 理想i8内饰谍照曝光:三排6座无零重力
- 324浏览 收藏
-
- 科技周边 · 人工智能 | 10小时前 |
- Linux服务器时间校对命令详解及应用
- 420浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 | 量子计算 营收 skywater 第一季度 ThermaView
- SkyWaterQ1营收6130万,强势新平台吸睛
- 293浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 |
- 问界新M7牧野青发布颜值爆表24.98万起
- 416浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 |
- 2024财年车企净利润榜:丰田居首,小米排15
- 426浏览 收藏
-
- 科技周边 · 人工智能 | 12小时前 | 开源 国产品牌 5G手机 电子信息制造业 软件及信息技术服务业
- 工信部数据:1-2月5G手机出货4161.9万,国产占85%
- 289浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 可图AI 2.0图片生成
- 可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
- 3次使用
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 24次使用
-
- AI Make Song
- AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
- 33次使用
-
- SongGenerator
- 探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
- 31次使用
-
- BeArt AI换脸
- 探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
- 35次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览