当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 30亿跑赢GPT-3的1750亿,谷歌新模型引热议,然而却把Hinton年龄搞错了

30亿跑赢GPT-3的1750亿,谷歌新模型引热议,然而却把Hinton年龄搞错了

来源:51CTO.COM 2023-04-30 06:47:41 0浏览 收藏

有志者,事竟成!如果你在学习科技周边,那么本文《30亿跑赢GPT-3的1750亿,谷歌新模型引热议,然而却把Hinton年龄搞错了》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

人工智能一个重要的目标是开发泛化能力强的模型。在自然语言处理(NLP)领域中,预训练语言模型在这方面取得了重大进展。这类模型往往通过微调来适应新的任务。

近日,来自谷歌的研究者分析了多种指令微调方法,包括扩展对指令微调的影响。实验表明,指令微调确实可以根据任务数量和模型大小实现良好的扩展,最大到 5400 亿参数的模型都能明显受益,未来的研究应该进一步扩大任务的数量和模型的大小。此外,该研究还分析了微调对模型执行推理能力的影响,结果都是很吸引人的。

由此产生的 Flan-T5 对 1800 余种语言任务进行了指令微调,明显提高了提示和多步推理能力,30 亿参数跑基准就能超过 GPT-3 的 1750 亿参数。

图片

看起来谷歌又为大模型找到了一个能力提升的方向。不过这一研究不仅引来了机器学习社区的欢迎,也有 Gary Marcus 的吐槽:

图片

谷歌的模型为什么把谷歌自己的著名科学家 Geoffrey Hinton 的出生日期搞错了?人家明明是 1947 年出生的老前辈。

论文作者之一的谷歌大脑首席科学家 Quoc Le 赶紧出来圆场:是临时工图片做错了,在论文里 Flan-T5 模型其实没有把 Geoff 的出生年月搞错,有图为证。

图片

顺便说一句,出生于 1963 年的著名 AI 学者是 Jürgen Schmidhuber。

既然出错的不是 AI 模型,让我们看看谷歌的新方法究竟能够为预训练模型带来哪些改变吧。

论文:Scaling Instruction-Finetuned Language Models 

图片


  • 论文地址:https://arxiv.org/abs/2210.11416
  • 公开模型:https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints

该研究使用 540B 参数模型训练 Flan-PaLM,将微调任务的数量增加到 1800 个以上,并包含思维链(CoT;Wei et al., 2022b)数据。经过训练后的 Flan-PaLM 优于 PaLM,在多个基准测试中达到了新的 SOTA。在推理能力方面,Flan-PaLM 能够利用 CoT 和自洽性(self-consistency;Wang et al., 2022c)在大规模多任务语言理解(MMLU; Hendrycks et al., 2020)上实现 75.2% 的准确率。

图片

此外,在一组具有挑战性的开放式生成问题上,Flan-PaLM 的表现明显优于 PaLM,可用性大幅提高。

总体而言,谷歌的这项研究阐明了使用指令微调来提高模型性能的具体方法。

方法

具体来说,该研究主要关注影响指令微调的几个方面,包括:(1)扩展任务数量,(2)扩展模型大小,以及(3)对思维链数据进行微调。

该研究发现具有上述方面的指令微调显著改进了各种模型类(PaLM、T5、U-PaLM)、prompting 设置(零样本、少样本、CoT)和评估基准(MMLU、BBH、 TyDiQA、MGSM、开放式生成)。例如,在 1.8K 任务上进行指令微调的 Flan-PaLM 540B 大大优于 PALM 540B(平均 + 9.4%)。Flan-PaLM 540B 在几个基准测试中实现了最先进的性能,例如在五次 MMLU 上达到 75.2%。

研究者还公开了 Flan-T5 检查点,即使与更大的模型(例如 PaLM 62B)相比,它也能实现强大的少样本性能。总体而言,指令微调是提高预训练语言模型的性能和可用性的通用方法。

图片

图 1. 研究人员在 1800 余个任务中对各种语言模型进行了微调,在有 / 缺乏样本(零样本和少样本)以及有 / 没有思维链的情况下进行微调,从而能够在一系列评估场景中进行泛化。

图片

图 2. 微调数据包括 473 个数据集、146 个任务类别和共计 1836 个任务。

图片

在数据微调和程序微调过程完成后,研究者根据模型大小对任务的性能来对比规模扩展的影响。首先,对于所有三种模型大小,多任务指令微调与没有微调相比性能有很大提高,增益范围从 9.4% 到 15.5%。其次,增加微调任务的数量可以提高性能。

最后,我们可以看到将模型规模增加一个数量级(8B → 62B 或 62B → 540B)可以明显提高微调和未微调模型的性能。

图片

多任务指令微调相对于模型大小(参数量)和微调任务数量及规模扩展对准确率的影响。

图片

增加微调数据中的任务数量可以提高 Flan-PaLM 在大多数评估基准上的性能。

研究人员证明了在微调混合中包含九个带有思维链 (CoT) 注释的数据集可以提高推理能力。下表显示 Flan-PaLM 的 CoT 提示能力在四个保留的评估基准上优于 PaLM。

图片

该研究发现对 CoT 数据进行指令微调的另外一个好处是可以实现零样本(zero-shot)推理,模型在没有针对 CoT 的少量样本的情况下就自行产生了推理能力,这可能需要大量工程调教才能正确实现。

图片

图 6:PaLM 和 Flan-PaLM 在一组 23 个具有挑战性的 BIG-Bench 任务 (BBH) 上的 zero-shot 性能。Flan-PaLM 需要通过「让我们一步一步思考」指令激活的思想链 (CoT) 生成。

为了展示新方法的通用性,谷歌训练了 T5、PaLM 和 U-PaLM,涵盖了从 8000 万到 5400 亿参数的模型体量范围,发现所有模型都能大幅提升性能。

图片

表 5. 指令微调 (Flan) 在其他持续预训练方法之上提高了性能。

经过测试,指令微调大大提高了所有模型类型的归一化平均性能,与非微调模型相比,T5 模型从指令微调中受益最多。这些结果对于某些基准测试来说是相当强的——例如,Flan-T5-XL 只有 30 亿参数,就达到了 47.6% 的 MMLU 分数,超过了 GPT-3 1750 亿参数的 43.9% 分数。

除了 NLP 基准之外,语言模型还能够为开放式问题请求生成长格式答案。在这一方面,标准的 NLP 基准和用于评估它们的自动指标不足以衡量人类的偏好。研究人员对此进行了评估,创建了一个包含 190 个示例的评估集。该评估集包括以零样本方式向模型提出的问题,涉及五个具有挑战性的类别,每个类别 20 个问题:创造力、上下文推理、复杂推理、计划和解释。

对于其中的 60 个示例(来自复杂的推理、计划和解释类别),该研究创建了一个带有思维链触发短语(例如,「让我们一步一步思考」)的变体,作为微调是否进行的另一个评估在 CoT 上启用 zero-shot。除了上述 160 个零样本输入之外,研究中还包括 30 个用于测试少样本能力的输入,这些没有指令微调的强语言模型已被证明在这些方面表现良好。

研究人员认为,指令微调和规模扩展均可以持续提升大语言模型性能,而微调对于推理能力至关重要,其还能泛化模型能力。通过指令微调与其他模型适应技术(例如 UL2R)结合,谷歌在这项工作中提出了最强模型 Flan-U-PaLM。

重要的是,指令微调并不像模型规模扩展一样会大幅增加计算成本,例如对于 PaLM 540B,指令微调只需要 0.2% 的预训练计算,但却可以将跨评估基准的归一化平均值提高 9.4%。使用指令微调的小型模型有时可以胜过没有微调的大模型。

出于这些原因,研究人员建议对几乎所有预训练的语言模型都进行指令微调。

理论要掌握,实操不能落!以上关于《30亿跑赢GPT-3的1750亿,谷歌新模型引热议,然而却把Hinton年龄搞错了》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
中山大学HCP实验室新突破:用因果范式再升级多模态大模型中山大学HCP实验室新突破:用因果范式再升级多模态大模型
上一篇
中山大学HCP实验室新突破:用因果范式再升级多模态大模型
如何将iPhone 锁机画面农历日期隐藏?
下一篇
如何将iPhone 锁机画面农历日期隐藏?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    9次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    9次使用
  • AI音乐实验室:一站式AI音乐创作平台,助力音乐创作
    AI音乐实验室
    AI音乐实验室(https://www.aimusiclab.cn/)是一款专注于AI音乐创作的平台,提供从作曲到分轨的全流程工具,降低音乐创作门槛。免费与付费结合,适用于音乐爱好者、独立音乐人及内容创作者,助力提升创作效率。
    9次使用
  • SEO标题PixPro:AI驱动网页端图像处理平台,提升效率的终极解决方案
    PixPro
    SEO摘要PixPro是一款专注于网页端AI图像处理的平台,提供高效、多功能的图像处理解决方案。通过AI擦除、扩图、抠图、裁切和压缩等功能,PixPro帮助开发者和企业实现“上传即处理”的智能化升级,适用于电商、社交媒体等高频图像处理场景。了解更多PixPro的核心功能和应用案例,提升您的图像处理效率。
    9次使用
  • EasyMusic.ai:零门槛AI音乐生成平台,专业级输出助力全场景创作
    EasyMusic
    EasyMusic.ai是一款面向全场景音乐创作需求的AI音乐生成平台,提供“零门槛创作 专业级输出”的服务。无论你是内容创作者、音乐人、游戏开发者还是教育工作者,都能通过EasyMusic.ai快速生成高品质音乐,满足短视频、游戏、广告、教育等多元需求。平台支持一键生成与深度定制,积累了超10万创作者,生成超100万首音乐作品,用户满意度达99%。
    12次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码