Python人脸识别教程:face\_recognition库详解
想轻松玩转Python人脸识别?这篇教程为你揭秘!本文将深入解析Python中强大的`face_recognition`库,助你快速入门人脸识别技术。文章将详细介绍如何通过`pip`安装依赖,包括`face_recognition`、`Pillow`和`dlib`。你将学会如何加载图片并精准检测人脸位置,获取人脸边界框坐标,以及提取人脸的128维特征向量,生成独特的“人脸编码”。更重要的是,我们将探讨如何利用`compare_faces`或`face_distance`函数进行人脸比对,判断匹配度。此外,本文还贴心提示了图片质量、多人场景顺序、性能优化及跨平台兼容性等关键注意事项,确保你的Python人脸识别项目高效稳定运行。无论你是初学者还是开发者,都能通过本教程掌握`face_recognition`库的核心用法,快速构建人脸识别应用。
人脸识别在Python中可通过face_recognition库轻松实现,主要包括以下步骤:1. 安装依赖,使用pip安装face_recognition、Pillow和dlib;2. 加载图片并检测人脸位置,获取边界框坐标;3. 提取人脸编码,生成128维特征向量;4. 进行人脸比对,通过compare_faces或face_distance判断匹配度。注意事项包括图片质量、多人场景顺序对应、性能优化及跨平台兼容性问题。整个流程简单高效,适合入门与快速开发。
人脸识别在Python中其实已经非常简单了,尤其是有了face_recognition这个库之后。它基于深度学习模型,可以轻松实现人脸检测、特征提取和比对等功能,适合入门者和快速开发使用。

安装face_recognition库
要使用这个库,首先得安装好相关依赖。最核心的是face_recognition
本身,以及用于图像处理的Pillow
和底层依赖dlib
。

安装命令如下:
pip install face_recognition
pip install pillow
如果你用的是Windows系统,可以直接通过pip安装;如果是Linux或macOS,可能还需要安装一些额外的编译依赖。不过大多数情况下,上面两条命令就足够了。

人脸检测与定位
这一步是识别的基础:找出图片中人脸的位置,并标出关键点(比如眼睛、鼻子、嘴巴等)。
使用方式也很简单,基本流程是加载图片 → 检测人脸位置 → 提取面部特征。
import face_recognition # 加载图片 image = face_recognition.load_image_file("your_face.jpg") # 检测人脸位置 face_locations = face_recognition.face_locations(image) # 输出结果是一个列表,每个元素代表一张脸的边界框(top, right, bottom, left) print(face_locations)
如果你有多个面孔,这个方法会自动识别出每一张脸的位置。也可以配合OpenCV或者PIL来画出这些矩形框。
提取人脸编码(Face Encoding)
光知道人脸在哪还不够,我们还要能“记住”这张脸是谁的。这就需要提取人脸的128维特征向量,也就是所谓的“face encoding”。
face_encodings = face_recognition.face_encodings(image, face_locations)
注意,如果图片里有多张脸,返回的结果也是一个列表,每个元素对应一张脸的编码。
你可以把这些编码保存下来,作为已知人脸数据库的一部分,后面用来做比对。
人脸比对与识别
有了已知的人脸编码后,就可以和新图片中的面孔进行比对了。主要用到的方法是compare_faces()
,它接受一个已知编码列表和一个待比较的编码,返回是否匹配的结果。
举个例子:
known_face_encodings = [...] # 已知的人脸编码列表 unknown_face_encoding = ... # 新检测到的人脸编码 results = face_recognition.compare_faces(known_face_encodings, unknown_face_encoding) # 打印匹配结果 print(results) # 返回布尔值列表,表示每个已知人脸是否匹配
如果你想更精确一点,还可以用face_distance()
函数得到匹配度数值,越小越接近。
实际应用中的几个注意事项
- 图片质量很重要:模糊、角度偏、遮挡多的照片容易导致识别失败。
- 多人场景下要小心顺序问题:face_locations和face_encodings的输出是一一对应的,但处理时要注意别搞混。
- 性能优化空间大:如果你要做实时视频识别,建议降低帧率、缩小图像尺寸,这样速度会快很多。
- 跨平台兼容性:虽然支持三大系统,但在树莓派等嵌入式设备上运行可能会卡顿,这时候可以考虑换成轻量级方案。
基本上就这些。用face_recognition做人脸识别确实挺方便的,功能强大又不难上手。只要把流程理清楚,再结合实际需求调整细节,就能做出像样的应用了。
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。

- 上一篇
- DALL·E图像生成教程与参数详解

- 下一篇
- 百度贴吧官网入口及网页版链接
-
- 文章 · python教程 | 1小时前 |
- PyCharm添加解释器失败?解决方法汇总
- 270浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Cisco设备配置对比与自动化管理技巧
- 215浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PythonTkinter控件教程全解析
- 329浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- GoogleCloudFunction错误处理与状态码解析
- 193浏览 收藏
-
- 文章 · python教程 | 2小时前 | 自定义迭代器 `__iter__`方法 `__next__`方法 StopIteration `__reversed__`方法
- 自定义迭代器实现步骤解析
- 241浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python整数转字符串的几种方法
- 443浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python类与对象入门详解
- 326浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- DropboxPythonAPI:团队文件管理技巧
- 438浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python最强应用领域解析
- 326浏览 收藏
-
- 文章 · python教程 | 4小时前 | Python 路径类型检查
- Python判断路径是文件还是文件夹的方法
- 333浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- 计算Pandas日期差忽略周日方法
- 105浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 514次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 675次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 685次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 708次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 771次使用
-
- 迅捷AIPPT
- 迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
- 663次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览