当前位置:首页 > 文章列表 > 文章 > python教程 > PandasNumPy行数据相加技巧

PandasNumPy行数据相加技巧

2025-09-14 10:27:51 0浏览 收藏

学习文章要努力,但是不要急!今天的这篇文章《Pandas NumPy 每组行数据相加方法》将会介绍到等等知识点,如果你想深入学习文章,可以关注我!我会持续更新相关文章的,希望对大家都能有所帮助!

使用 Pandas 和 NumPy 在 Group 内将每行数据添加到每行

本文介绍了如何使用 Pandas 和 NumPy 结合,针对 DataFrame 中的分组数据,将组内每行特定的数据信息添加到该组的每一行中。通过 NumPy 的滚动索引技巧,高效地实现了数据的广播和扩展,避免了低效的循环操作,并提供了详细的代码示例和解释。

在数据分析中,经常会遇到需要在分组数据中进行行间操作的场景。例如,在赛马数据集中,我们可能需要将每匹马的信息添加到同一场比赛的其他马匹的信息中,以便进行更深入的比较和分析。本文将介绍如何使用 Pandas 和 NumPy 来高效地实现这一目标。

解决方案

核心思路是利用 NumPy 的滚动索引功能,避免显式循环,从而提升性能。具体步骤如下:

  1. 定义滚动函数 roll(g): 该函数接收一个 DataFrame Group 作为输入,并使用 NumPy 的索引技巧来滚动和重塑数据。
  2. 将 DataFrame 转换为 NumPy 数组: g.to_numpy() 将 DataFrame Group 转换为 NumPy 数组,以便进行高效的数值操作。
  3. 创建索引数组: np.arange(len(a)) 创建一个索引数组,用于生成滚动索引。
  4. 生成滚动索引: ((x[:,None] + x)%len(a)).ravel() 使用 NumPy 的广播功能和模运算,生成滚动索引。这个表达式的核心在于 x[:,None] + x,它创建了一个二维数组,其中每一行都是 x 加上一个不同的偏移量。%len(a) 确保索引在数组长度范围内循环。ravel() 将二维数组扁平化为一维数组,用于索引。
  5. 使用滚动索引提取数据: a[((x[:,None] + x)%len(a)).ravel()] 使用生成的滚动索引从 NumPy 数组中提取数据。
  6. 重塑数据为 DataFrame: reshape(len(a), -1) 将提取的数据重塑为 DataFrame 的形状。
  7. 创建新的列名: [f'{c}_{i+1}' for i in x for c in g.columns] 为新的 DataFrame 创建列名,其中 c 是原始列名,i 是滚动索引。
  8. 分组并应用滚动函数: 使用 data_orig_df.groupby(cols).apply(lambda g: roll(g.drop(columns=cols))) 对 DataFrame 进行分组,并对每个组应用 roll 函数。cols 是用于分组的列名,例如 ['meetingId', 'raceId']。drop(columns=cols) 从 DataFrame Group 中删除分组列,以便 roll 函数只处理需要滚动的数据列。
  9. 重置索引: reset_index(cols) 将分组列重新添加到 DataFrame 中。

代码示例

import pandas as pd
import numpy as np

data_orig = {
    'meetingId': [178515] * 6,
    'raceId': [879507] * 6,
    'horseId': [90001, 90002, 90003, 90004, 90005, 90006],
    'position': [1, 2, 3, 4, 5, 6],
    'weight': [51, 52, 53, 54, 55, 56],
}

data_orig_df = pd.DataFrame(data_orig)

def roll(g):
    a = g.to_numpy()
    x = np.arange(len(a))
    return pd.DataFrame(a[((x[:,None] + x)%len(a)).ravel()].reshape(len(a), -1),
                        index=g.index,
                        columns=[f'{c}_{i+1}' for i in x for c in g.columns])

cols = ['meetingId', 'raceId']

out = (data_orig_df.groupby(cols)
       .apply(lambda g: roll(g.drop(columns=cols)))
       .reset_index(cols)
       )

print(out)

代码解释

  • import pandas as pd: 导入 Pandas 库,用于数据处理。
  • import numpy as np: 导入 NumPy 库,用于数值计算。
  • data_orig: 包含原始数据的字典。
  • data_orig_df = pd.DataFrame(data_orig): 将字典转换为 Pandas DataFrame。
  • roll(g): 该函数是核心,它接收一个 DataFrame Group 作为输入,并使用 NumPy 的索引技巧来滚动和重塑数据。
  • cols = ['meetingId', 'raceId']: 定义用于分组的列名。
  • data_orig_df.groupby(cols): 根据 meetingId 和 raceId 列对 DataFrame 进行分组。
  • .apply(lambda g: roll(g.drop(columns=cols))): 对每个组应用 roll 函数,并删除分组列。
  • .reset_index(cols): 将分组列重新添加到 DataFrame 中。
  • print(out): 打印结果 DataFrame。

注意事项

  • 确保数据类型一致:在进行 NumPy 操作之前,确保 DataFrame 中的数据类型一致,避免出现类型错误。
  • 处理大数据集:对于非常大的数据集,可以考虑使用更高效的 NumPy 函数或使用 Dask 等分布式计算框架。
  • 内存占用:滚动操作可能会增加内存占用,需要根据数据集的大小进行调整。

总结

本文介绍了如何使用 Pandas 和 NumPy 结合,高效地将分组数据中每行的数据添加到该组的每一行中。通过 NumPy 的滚动索引技巧,避免了低效的循环操作,并提供了详细的代码示例和解释。掌握这种方法可以帮助你更高效地处理分组数据,进行更深入的数据分析。

好了,本文到此结束,带大家了解了《PandasNumPy行数据相加技巧》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!

HTML通知消息添加可访问性方法详解HTML通知消息添加可访问性方法详解
上一篇
HTML通知消息添加可访问性方法详解
成都首创飞机行李免费托运服务
下一篇
成都首创飞机行李免费托运服务
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    514次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    499次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO  AI Mermaid 流程图:自然语言生成,文本驱动可视化创作
    AI Mermaid流程图
    SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
    445次使用
  • 搜获客笔记生成器:小红书医美爆款内容AI创作神器
    搜获客【笔记生成器】
    搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
    433次使用
  • iTerms:一站式法律AI工作台,智能合同审查起草与法律问答专家
    iTerms
    iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
    462次使用
  • TokenPony:AI大模型API聚合平台,一站式接入,高效稳定高性价比
    TokenPony
    TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
    476次使用
  • 迅捷AIPPT:AI智能PPT生成器,高效制作专业演示文稿
    迅捷AIPPT
    迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
    435次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码