Python高效读写Parquet技巧
“纵有疾风来,人生不言弃”,这句话送给正在学习文章的朋友们,也希望在阅读本文《Python加速数据IO:Parquet优化技巧》后,能够真的帮助到大家。我也会在后续的文章中,陆续更新文章相关的技术文章,有好的建议欢迎大家在评论留言,非常感谢!
使用Parquet提升Python数据IO效率的关键在于其列式存储结构和高效压缩特性。1. Parquet按需读取特定列,节省内存和时间;2. 使用PyArrow读写Parquet减少序列化开销,推荐Snappy或Gzip压缩;3. 分区存储按分类维度划分数据,减少查询时的IO开销;4. 控制列数量和类型优化性能,如选用int32或字典编码。这些方法显著提升大规模数据处理效率。
数据读写速度往往是数据分析流程中的瓶颈,尤其是面对大规模数据时。Python虽然灵活易用,但默认的IO方式在处理大数据时常常显得力不从心。这时候,选择合适的数据格式和工具就变得非常关键。Parquet格式结合合适的库使用,可以显著提升数据IO效率。

为什么选Parquet?
Parquet是一种列式存储格式,相比CSV或JSON这类行式格式,在读取部分字段时性能优势非常明显。它支持高效压缩、编码方式,并且能很好地与Spark、Pandas等工具集成。如果你只关心某些列的数据,Parquet不会把整行都读进来,节省了大量内存和时间。
常见场景比如分析用户行为日志,你可能只需要“用户ID”、“点击时间”和“页面URL”,而原始数据可能包含几十个字段。这种情况下,Parquet的优势就体现出来了。

使用PyArrow读写Parquet更高效
在Python中,pandas
配合pyarrow
引擎读写Parquet文件是一个不错的选择。相比默认的fastparquet
或pyarrow.parquet
模块,直接使用pyarrow
对象操作可以进一步减少序列化/反序列化的开销。
举个例子:

import pyarrow as pa import pyarrow.parquet as pq # 写入Parquet table = pa.Table.from_pandas(df) pq.write_table(table, 'output.parquet', compression='snappy') # 读取Parquet table = pq.read_table('input.parquet') df = table.to_pandas()
这里有几个细节需要注意:
- 压缩算法建议使用
snappy
或gzip
,兼顾压缩率和速度; - 文件分块(row_group)大小可调整,一般设为几百万行比较合适;
- 如果后续要在Spark中处理,注意Parquet的schema要保持一致。
分区存储提高查询效率
如果数据有明显的分类维度,例如按天、按地区划分,那就可以考虑使用分区(partitioning)。Parquet支持目录结构作为分区键,这样读取特定分区的数据时,就不需要扫描全部文件。
例如,将数据按日期划分为多个子目录:
data/ ├── date=2024-01-01/ │ ├── part-0.parquet ├── date=2024-01-02/ │ ├── part-0.parquet
读取某一天的数据时,只需指定对应路径即可,大大减少了不必要的IO开销。在使用pyarrow.parquet.read_table
时,可以通过设置filesystem
参数来访问远程存储(如S3或HDFS)上的分区数据。
小技巧:合理控制列的数量和类型
Parquet是列式存储,所以字段越多,整体写入时间越长。如果你的业务逻辑不需要某些列,可以在写入前做一次筛选,去掉冗余字段。此外,字段类型也会影响存储空间和读取速度,比如使用int32
而不是默认的int64
,或者将字符串枚举值转成字典编码(dictionary encoding),都可以带来性能提升。
基本上就这些。掌握好Parquet的使用方式,再结合PyArrow等工具,就能让Python在数据IO上跑得更快一些。
终于介绍完啦!小伙伴们,这篇关于《Python高效读写Parquet技巧》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

- 上一篇
- Golang代码配置方案:cue-langvsjsonnet对比

- 下一篇
- Linux数据库优化技巧全解析
-
- 文章 · python教程 | 25分钟前 |
- Python查找子串技巧全解析
- 248浏览 收藏
-
- 文章 · python教程 | 42分钟前 |
- Python连接Snowflake数据仓库方法详解
- 236浏览 收藏
-
- 文章 · python教程 | 45分钟前 |
- PythonPillow图片处理教程详解
- 337浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python判断键是否存在方法
- 479浏览 收藏
-
- 文章 · python教程 | 1小时前 | Python 继承 类型检查 抽象基类 isinstance()
- Python中isinstance()使用方法详解
- 140浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Pandas多列字符串匹配与列扩展技巧
- 308浏览 收藏
-
- 文章 · python教程 | 2小时前 | Python Python数据处理
- Python处理文本编码问题的技巧
- 315浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python跨模块异常处理技巧分享
- 473浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PandasNumPy行数据相加技巧
- 264浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Ubuntu下Docker部署Python应用全攻略
- 407浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Pythonrequests发送HTTP请求教程
- 490浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python+TesseractOCR训练工具教程
- 213浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 514次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 447次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 435次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 465次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 480次使用
-
- 迅捷AIPPT
- 迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
- 437次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览