当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 自监督为何有效?243页普林斯顿博士论文「理解自监督表征学习」,全面阐述对比学习、语言模型和自我预测三类方法

自监督为何有效?243页普林斯顿博士论文「理解自监督表征学习」,全面阐述对比学习、语言模型和自我预测三类方法

来源:51CTO.COM 2023-04-27 14:45:13 0浏览 收藏

今日不肯埋头,明日何以抬头!每日一句努力自己的话哈哈~哈喽,今天我将给大家带来一篇《自监督为何有效?243页普林斯顿博士论文「理解自监督表征学习」,全面阐述对比学习、语言模型和自我预测三类方法》,主要内容是讲解等等,感兴趣的朋友可以收藏或者有更好的建议在评论提出,我都会认真看的!大家一起进步,一起学习!

预训练已成为一种替代和有效的范式,以克服这些缺点,其中模型首先使用容易获得的数据进行训练,然后用于解决感兴趣的下游任务,标记数据比监督学习少得多。

使用未标记数据进行预训练,即自监督学习,尤其具有革命性,在不同领域取得了成功:文本、视觉、语音等。

这就提出了一个有趣且具有挑战性的问题:为什么对未标记数据进行预训练应该有助于看似不相关的下游任务?

图片

论文地址:https://dataspace.princeton.edu/handle/88435/dsp01t435gh21h

本文提出了一些工作,提出并建立了一个理论框架,以研究为什么自监督学习对下游任务有益。

该框架适用于对比学习、自回归语言建模和基于自我预测的方法。该框架的核心思想是预训练有助于学习数据的低维表示,这随后有助于用线性分类器解决感兴趣的下游任务,需要较少的标记数据。

一个常见的主题是形式化用于构建自监督学习任务的无标记数据分布的理想属性。在适当的形式化下,可以表明,近似最小化正确的预训练目标可以提取在无标记数据分布中隐式编码的下游信号。

最后表明,该信号可以用线性分类器从学习到的表示中解码,从而为跨任务的「技能和知识」迁移提供了一种形式化。

图片

引言

在寻求设计智能体和数据驱动的问题解决方案的过程中,机器学习和人工智能领域在过去十年中取得了巨大的进步。随着在具有挑战性的监督学习基准上的初步成功,如ImageNet[Deng等人,2009],深度学习的创新随后导致模型在不同领域的许多此类基准上具有超人的性能。训练这种特定于任务的模型当然令人印象深刻,并具有巨大的实用价值。然而,它有一个重要的限制,即需要大量的标记或标注数据集,而这通常是昂贵的。此外,从智能的角度来看,人们希望有更通用的模型,就像人类一样[Ahn和Brewer, 1993],可以从以前的经验中学习,将它们总结为技能或概念,并利用这些技能或概念来解决新任务,很少或没有演示。毕竟,在没有明确监督的情况下,婴儿通过观察和互动来学习很多东西。这些局限性启发了预训练的另一种范式。

本文的重点是使用通常大量可用的未标记数据进行预训练。使用未标记数据的想法一直是机器学习的兴趣点,特别是通过无监督学习和半监督学习。使用深度学习对其进行的现代适应通常称为自监督学习(SSL),并已经开始通过对比学习和语言建模等思想改变机器学习和人工智能的格局。自监督学习的思想是仅使用未标记的数据构建某些任务,并训练模型在构建的任务上表现良好。这类任务通常需要模型通过从观察到的或保留的部分预测输入的未观察到的或隐藏的部分(或属性)来编码数据的结构属性[LeCun和Misra, 2021]。自监督学习在许多感兴趣的下游任务上显示出了通用性和实用性,通常比从头解决任务具有更好的样本效率,从而使我们离通用智能体的目标更近了一步。事实上,最近,像GPT-3 [Brown等人,2020]等大型语言模型已经展示了大规模出现的令人着迷的「突发行为」,引发了人们对自监督预训练想法的更多兴趣。

尽管自监督学习在经验上取得了成功,并继续显示出巨大的前景,但除了粗略的直觉之外,仍然缺乏对其工作原理的良好理论理解。这些令人印象深刻的成功提出了有趣的问题,因为先验不清楚为什么在一个任务上训练的模型应该有助于另一个看似不相关的任务,即为什么在任务a上训练应该有助于任务b。虽然对SSL(和一般的深度学习)的完整理论理解是具有挑战性和难以实现的,但在任何抽象层次上理解这种现象都可能有助于开发更有原则的算法。本文的研究动机是:

为什么在自监督学习任务上进行训练(使用大量未标记数据)有助于解决数据稀缺的下游任务?如何将「知识和技能」的迁移正式化?

虽然有大量关于监督学习的文献,但来自SSL任务→下游任务的泛化与监督学习中来自训练集→测试集的泛化有本质的不同。对于分类下游任务的监督学习,例如,从未知分布中采样的在输入-标签对的训练集上训练的模型,可以直接用于对从相同分布中采样的未见过的测试集的评估。这个基本的分布建立了从训练集到测试集的联系。然而,从SSL任务→下游任务的概念连接就不那么清晰了,因为SSL任务中使用的未标记数据没有关于下游标签的明确信号。这意味着在SSL任务上预训练的模型(例如,从其余部分预测输入的一部分)不能直接用于下游任务(例如,从输入预测类别标签)。因此,「知识和技能」的迁移需要使用一些标记数据进行额外的训练步骤,理想情况下比从头开始监督学习所需的少。对SSL任务→下游任务泛化的任何理论理解都需要解决这些问题:「未标记数据的内在作用是什么?以及「如何将预训练模型用于下游任务?」本文针对分类的下游任务,通过对无标签数据进行分布假设,并利用表示学习的思想,研究这些问题:

(a)(分布假设)未标记的数据分布隐含地包含有关感兴趣的下游分类任务的信息。

(b)(表示学习)在适当的SSL任务上预训练的模型可以通过学习到的表示对该信号进行编码,这些表示随后可以用线性分类器解决下游分类任务。

点(a)表明,未标记的某些结构属性隐式地为我们提供了有关后续下游任务的提示,而自监督学习可以帮助从数据中梳理出这个信号。点(b)提出了一种简单且经验上有效的方法来使用预训练模型,利用模型的学习表示。本文识别并在数学上量化了未标记数据的分布属性,对于不同的SSL方法,如对比学习、语言建模和自我预测,可以证明可以学习到良好的表示。在下一节中,我们将深入研究表示学习的思想,并形式化解释为什么自监督学习有助于下游任务。

图片

文中关于模型,深度学习的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《自监督为何有效?243页普林斯顿博士论文「理解自监督表征学习」,全面阐述对比学习、语言模型和自我预测三类方法》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
微软终于在试验 Windows 11 的任务栏升级微软终于在试验 Windows 11 的任务栏升级
上一篇
微软终于在试验 Windows 11 的任务栏升级
人工智能与生活方式的未来
下一篇
人工智能与生活方式的未来
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 互联网信息服务算法备案系统:如何完成算法备案流程
    互联网信息服务算法备案系统
    了解互联网信息服务算法备案系统,掌握如何进行算法备案的详细步骤和要求,确保您的互联网服务合规运营。
    62次使用
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    106次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    140次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    270次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    127次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码