当前位置:首页 > 文章列表 > 文章 > java教程 > 扫描线算法教程:求最短时间技巧

扫描线算法教程:求最短时间技巧

2025-09-13 09:59:12 0浏览 收藏

亲爱的编程学习爱好者,如果你点开了这篇文章,说明你对《扫描线算法教程:求解任务最短时间方法》很感兴趣。本篇文章就来给大家详细解析一下,主要介绍一下,希望所有认真读完的童鞋们,都有实质性的提高。

求解完成任务的最短时间:一种基于扫描线的算法教程

本文详细介绍了如何使用扫描线算法解决“求解完成任务的最短时间”问题。该问题涉及在给定的时间范围内完成多个任务,每个任务都有起始时间、结束时间和所需完成时间。本文将深入探讨算法逻辑,并通过Java代码示例展示如何有效地计算完成所有任务所需的最小时间。

问题描述

给定一个任务数组 tasks,其中每个任务表示为 [begin, end, period],分别表示任务的起始时间、结束时间和所需完成时间。任务必须在 begin 和 end 之间完成,且 period 表示完成任务所需的总时间。允许并行处理多个任务,目标是找到完成所有任务所需的最小时间。

算法思路:扫描线算法

解决此问题的有效方法是使用扫描线算法。该算法的核心思想是将任务的起始和结束时间点视为事件,然后按时间顺序扫描这些事件。

  1. 事件拆分和排序: 将每个任务 [begin, end, period] 拆分为两个事件:起始事件 (begin, period, "start") 和结束事件 (end, begin, "end")。然后,将所有事件按时间顺序排序。注意结束事件需要携带开始时间信息,方便后续处理。
  2. 扫描过程: 维护一个栈(或者优先队列)来存储当前活跃的任务。当遇到起始事件时,将其添加到栈中。当遇到结束事件时,找到对应的起始事件,并计算该任务剩余需要完成的时间。然后,从栈中移除该任务,并更新栈中其他任务的剩余时间。
  3. 时间累加: 在扫描过程中,累加每个时间点实际执行任务的时间,最终得到完成所有任务所需的最小时间。

Java 代码示例

import java.util.*;

class Solution {
    public int minTimeToFinishTasks(List<List<Integer>> tasks) {
        List<int[]> events = new ArrayList<>();
        for (List<Integer> task : tasks) {
            int start = task.get(0);
            int end = task.get(1);
            int period = task.get(2);
            events.add(new int[]{start, period, 0, end}); // 0 for start
            events.add(new int[]{end, period, 1, start});   // 1 for end
        }

        // Sort events by time, if time is same, process end events first
        Collections.sort(events, (a, b) -> {
            if (a[0] != b[0]) {
                return a[0] - b[0];
            } else {
                return a[2] - b[2]; // End events first if time is same
            }
        });

        int res = 0;
        List<int[]> activeTasks = new ArrayList<>(); // Use a list as stack

        for (int[] event : events) {
            int time = event[0];
            int period = event[1];
            int type = event[2];
            int startTime = event[3];

            if (type == 0) { // Start event
                activeTasks.add(new int[]{startTime, period});
            } else { // End event
                // Find the corresponding start event
                int timeLeft = 0;
                for (int i = 0; i < activeTasks.size(); i++) {
                    if (activeTasks.get(i)[0] == startTime) {
                        timeLeft = activeTasks.get(i)[1];
                        activeTasks.remove(i);
                        break;
                    }
                }

                res += timeLeft;

                // Subtract time from other active tasks
                int subtract = timeLeft;
                for (int i = 0; i < activeTasks.size(); i++) {
                    int currentPeriod = activeTasks.get(i)[1];
                    int deduction = Math.min(subtract, currentPeriod);
                    activeTasks.get(i)[1] -= deduction;
                    subtract -= deduction;
                }
                 // Remove tasks with period <= 0 from stack after subtraction
                activeTasks.removeIf(task -> task[1] <= 0);
            }
        }

        return res;
    }

    public static void main(String[] args) {
        Solution solution = new Solution();
        List<List<Integer>> tasks = new ArrayList<>();
        tasks.add(Arrays.asList(1, 3, 2));
        tasks.add(Arrays.asList(2, 5, 3));
        tasks.add(Arrays.asList(5, 6, 2));
        int result = solution.minTimeToFinishTasks(tasks);
        System.out.println("Minimum time to finish tasks: " + result); // Output: 4
    }
}

代码解释

  1. minTimeToFinishTasks(List> tasks): 主函数,接收任务列表作为输入,返回完成所有任务所需的最小时间。
  2. 事件列表创建: 遍历任务列表,将每个任务拆分为起始事件和结束事件,并添加到事件列表中。起始事件类型标记为0,结束事件类型标记为1。
  3. 事件排序: 使用 Collections.sort 方法对事件列表进行排序。排序规则是首先按时间升序排列,如果时间相同,则结束事件排在起始事件之前。
  4. 扫描过程: 遍历排序后的事件列表。
    • 起始事件: 将起始事件添加到 activeTasks 列表中。
    • 结束事件: 从 activeTasks 列表中找到对应的起始事件,计算该任务剩余需要完成的时间 timeLeft,并将其从 activeTasks 列表中移除。将 timeLeft 加到结果 res 中。然后,遍历 activeTasks 列表,从其他活跃任务中扣除最多 timeLeft 的时间。
  5. 返回结果: 返回 res,即完成所有任务所需的最小时间。

注意事项

  • 事件排序: 正确的事件排序是算法的关键。确保结束事件在相同时间点的起始事件之前处理,以避免时间计算错误。
  • 栈的维护: 在处理结束事件后,需要及时清理 activeTasks 列表,移除已经完成的任务,避免对后续计算产生影响。
  • 数据结构选择: 优先队列也可以作为activeTasks的数据结构,这样可以更加高效的找到剩余时间最短的任务。

总结

扫描线算法是一种解决此类时间调度问题的有效方法。通过将任务拆分为事件并按时间顺序处理,可以有效地计算完成所有任务所需的最小时间。该算法的时间复杂度主要取决于事件排序的时间复杂度,通常为 O(n log n),其中 n 是任务的数量。该方法思路清晰,代码实现相对简洁,易于理解和维护。

好了,本文到此结束,带大家了解了《扫描线算法教程:求最短时间技巧》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!

央视频怎么查版本号?详细教程分享央视频怎么查版本号?详细教程分享
上一篇
央视频怎么查版本号?详细教程分享
Win11语音访问设置与使用教程
下一篇
Win11语音访问设置与使用教程
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    514次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    499次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO  AI Mermaid 流程图:自然语言生成,文本驱动可视化创作
    AI Mermaid流程图
    SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
    379次使用
  • 搜获客笔记生成器:小红书医美爆款内容AI创作神器
    搜获客【笔记生成器】
    搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
    355次使用
  • iTerms:一站式法律AI工作台,智能合同审查起草与法律问答专家
    iTerms
    iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
    388次使用
  • TokenPony:AI大模型API聚合平台,一站式接入,高效稳定高性价比
    TokenPony
    TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
    364次使用
  • 迅捷AIPPT:AI智能PPT生成器,高效制作专业演示文稿
    迅捷AIPPT
    迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
    368次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码