当前位置:首页 > 文章列表 > 文章 > python教程 > Python并发编程:threading与multiprocessing对比解析

Python并发编程:threading与multiprocessing对比解析

2025-09-12 16:15:58 0浏览 收藏

想提升 Python 程序的运行效率?并发编程是关键!本文深入探讨 Python 中实现并发的两种主要方式:`threading` 和 `multiprocessing`。你是否也疑惑过,面对 I/O 密集型任务和 CPU 密集型任务,究竟该如何选择?**`threading` 模块适用于 I/O 密集型任务**,它通过线程切换来高效利用 CPU 时间,但受限于全局解释器锁(GIL),无法实现真正的 CPU 并行。**`multiprocessing` 模块则适用于 CPU 密集型任务**,它创建独立的进程,绕过 GIL 限制,充分利用多核 CPU 的并行计算能力。本文将通过实例代码,详细解析 `threading` 和 `multiprocessing` 的优缺点,助你选择最适合的并发方案,显著提升 Python 程序的性能。

Python threading和multiprocessing的核心区别在于:threading受GIL限制,无法实现CPU并行,适合I/O密集型任务;multiprocessing创建独立进程,绕开GIL,可利用多核实现真正并行,适合CPU密集型任务。1. threading共享内存、开销小,但GIL导致多线程不能并行执行Python代码;2. multiprocessing进程隔离、通信复杂、启动开销大,但能充分发挥多核性能。因此,I/O密集型任务应选择threading以高效切换等待,CPU密集型任务应选择multiprocessing以实现并行计算。

如何实现 Python 的并发编程?threading 与 multiprocessing

Python 的并发编程主要依赖两个核心模块:threadingmultiprocessing。简单来说,如果你处理的是大量等待外部响应(比如网络请求、文件读写)的 I/O 密集型任务,threading 常常是首选,因为它开销小。但如果你的任务是计算量巨大、需要榨干 CPU 性能的计算密集型任务,那么 multiprocessing 才是正解,因为它能让你真正利用多核 CPU,绕开那个著名的 GIL(全局解释器锁)的限制。

要实现 Python 的并发,我们通常会从这两个模块入手。它们代表了两种不同的并发模型:线程(threading)和进程(multiprocessing)。

先说说 threading。它允许你在同一个进程内创建多个执行流,这些线程共享进程的内存空间。这听起来很美,内存共享意味着数据交换方便。但问题是,CPython 有个“全局解释器锁”——GIL。这个锁规定了在任何时刻,只有一个线程能执行 Python 字节码。所以,尽管你有多个线程,但它们在同一时间点上,只有一个能真正跑起来。这意味着,对于纯粹的 CPU 密集型任务,threading 无法实现真正的并行计算,因为它本质上是并发而非并行。它更擅长的是在等待 I/O 时切换到另一个线程,这样 CPU 就不会闲着。

import threading
import time

def task_io_bound(name):
    print(f"线程 {name}: 开始执行 I/O 密集型任务...")
    time.sleep(2) # 模拟 I/O 等待
    print(f"线程 {name}: 任务完成。")

threads = []
for i in range(3):
    thread = threading.Thread(target=task_io_bound, args=(f"T{i}",))
    threads.append(thread)
    thread.start()

for thread in threads:
    thread.join()
print("所有 I/O 密集型线程任务完成。")

然后是 multiprocessing。这个模块就直接多了,它创建的是独立的进程,每个进程都有自己的 Python 解释器和内存空间。进程之间的数据是隔离的,所以它们不会受到 GIL 的限制。每个进程都能在自己的 CPU 核上独立运行,从而实现真正的并行计算。当然,进程间的通信就需要额外的机制,比如队列(Queue)或管道(Pipe)。它的缺点是启动开销相对大,因为要复制整个进程环境。

import multiprocessing
import time
import os

def task_cpu_bound(name):
    print(f"进程 {name} (PID: {os.getpid()}): 开始执行 CPU 密集型任务...")
    result = 0
    for _ in range(10_000_000): # 模拟 CPU 密集计算
        result += 1
    print(f"进程 {name} (PID: {os.getpid()}): 任务完成,结果 {result}。")

if __name__ == '__main__': # 确保在 Windows 上能正常运行
    processes = []
    for i in range(3):
        process = multiprocessing.Process(target=task_cpu_bound, args=(f"P{i}",))
        processes.append(process)
        process.start()

    for process in processes:
        process.join()
    print("所有 CPU 密集型进程任务完成。")

选择哪种方式,说白了,就是看你的任务瓶颈在哪里。I/O 等待多,选 threading;计算量大,选 multiprocessing

Python threadingmultiprocessing 的核心区别是什么,以及何时选择它们

到这里,我们也就讲完了《Python并发编程:threading与multiprocessing对比解析》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于gil,CPU密集型,I/O密集型,threading,multiprocessing的知识点!

Python类型提示是什么?如何使用?Python类型提示是什么?如何使用?
上一篇
Python类型提示是什么?如何使用?
Foxmail网页登录入口更新与手机支持
下一篇
Foxmail网页登录入口更新与手机支持
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    514次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    499次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO  AI Mermaid 流程图:自然语言生成,文本驱动可视化创作
    AI Mermaid流程图
    SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
    299次使用
  • 搜获客笔记生成器:小红书医美爆款内容AI创作神器
    搜获客【笔记生成器】
    搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
    273次使用
  • iTerms:一站式法律AI工作台,智能合同审查起草与法律问答专家
    iTerms
    iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
    305次使用
  • TokenPony:AI大模型API聚合平台,一站式接入,高效稳定高性价比
    TokenPony
    TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
    268次使用
  • 迅捷AIPPT:AI智能PPT生成器,高效制作专业演示文稿
    迅捷AIPPT
    迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
    289次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码