当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 研究表明强化学习模型容易受到成员推理攻击

研究表明强化学习模型容易受到成员推理攻击

来源:51CTO.COM 2023-05-03 11:55:59 0浏览 收藏

在科技周边实战开发的过程中,我们经常会遇到一些这样那样的问题,然后要卡好半天,等问题解决了才发现原来一些细节知识点还是没有掌握好。今天golang学习网就整理分享《研究表明强化学习模型容易受到成员推理攻击》,聊聊,希望可以帮助到正在努力赚钱的你。

​译者 | 李睿

审校 | 孙淑娟​

随着机器学习成为人们每天都在使用的很多应用程序的一部分,人们越来越关注如何识别和解决机器学习模型的安全和隐私方面的威胁。  

研究表明强化学习模型容易受到成员推理攻击

然而,不同机器学习范式面临的安全威胁各不相同,机器学习安全的某些领域仍未得到充分研究。尤其是强化学习算法的安全性近年来并未受到太多关注。  

加拿大的麦吉尔大学、机器学习实验室(MILA)和滑铁卢大学的研究人员开展了一项新研究,主要侧重于深度强化学习算法的隐私威胁。研究人员提出了一个框架,用于测试强化学习模型对成员推理攻击的脆弱性。  

研究结果表明,攻击者可以对深度强化学习(RL)系统进行有效攻击,并可能获得用于训练模型的敏感信息。他们的研究成果意义重大,因为强化学习技术目前正在进入工业和消费者应用领域。  

成员推理攻击  

研究表明强化学习模型容易受到成员推理攻击

成员推理攻击可以观察目标机器学习模型的行为,并预测用于训练它的示例。  

每个机器学习模型都在一组示例上进行训练。在某些情况下,训练示例包括敏感信息,例如健康或财务数据或其他个人身份信息。  

成员推理攻击是一系列试图强制机器学习模型泄露其训练集数据的技术。虽然对抗性示例(针对机器学习的更广为人知的攻击类型)专注于改变机器学习模型的行为,并被视为安全威胁,但成员推理攻击侧重于从模型中提取信息,并且更多的是隐私威胁。

成员推理攻击已经在有监督的机器学习算法中进行了深入研究,其中模型是在标记示例上进行训练的。  

与监督学习不同的是,深度强化学习系统不使用标记示例。强化学习(RL)代理从它与环境的交互中获得奖励或惩罚。它通过这些互动和强化信号逐渐学习和发展自己的行为。

该论文的作者在书面评论说,“强化学习中的奖励不一定代表标签;因此,它们不能充当其他学习范式中成员推理攻击设计中经常使用的预测标签。”

研究人员在他们的论文中写道,“目前还没有关于直接用于训练深度强化学习代理的数据的潜在成员泄漏的研究。”  

而缺乏这种研究的部分原因是强化学习在现实世界中的应用有限。  

研究论文的作者说,“尽管深度强化学习领域取得了重大进展,例如Alpha Go、Alpha Fold和GT Sophy,但深度强化学习模型仍未在工业规模上得到广泛采用。另一方面,数据隐私是一个应用非常广泛的研究领域,深度强化学习模型在实际工业应用中的缺乏极大地延迟了这一基础和重要研究领域的研究,导致对强化学习系统的攻击的研究不足。”  

随着在现实世界场景中工业规模应用强化学习算法的需求不断增长,从对抗性和算法的角度对解决强化学习算法隐私方面的框架的关注和严格要求变得越来越明显和相关。

深度强化学习中成员推断的挑战  

研究表明强化学习模型容易受到成员推理攻击

研究论文的作者说,“我们在开发第一代保护隐私的深度强化学习算法方面所做出的努力,使我们意识到从隐私的角度来看,传统机器学习算法和强化学习算法之间存在根本的结构差异。”

研究人员发现,更关键的是,考虑到潜在的隐私后果,深度强化学习与其他学习范式之间的根本差异在为实际应用部署深度强化学习模型方面提出了严峻挑战。  

他们说,“基于这一认识,对我们来说最大的问题是:深度强化学习算法对隐私攻击(如成员推断攻击)的脆弱性有多大?现有的成员推理攻击攻击模型是专门为其他学习范式设计的,因此深度强化学习算法对这类攻击的脆弱程度在很大程度上是未知的。鉴于在世界范围内部署对隐私的严重影响,这种对未知事物的好奇心以及提高研究和工业界意识的必要性是这项研究的主要动机。”  

在训练过程中,强化学习模型经历了多个阶段,每个阶段都由动作和状态的轨迹或序列组成。因此,一个成功的用于强化学习的成员推理攻击算法必须学习用于训练模型的数据点和轨迹。一方面,这使得针对强化学习系统设计成员推理算法变得更加困难;而另一方面,也使得难以评估强化学习模型对此类攻击的鲁棒性。

作者说,“与其他类型的机器学习相比,在强化学习中成员推理攻击(MIA)很困难,因为在训练过程中使用的数据点具有顺序和时间相关的性质。训练和预测数据点之间的多对多关系从根本上不同于其他学习范式。”

强化学习和其他机器学习范式之间的根本区别,使得在设计和评估用于深度强化学习的成员推理攻击时以新的方式思考至关重要。  

设计针对强化学习系统的成员推理攻击  

在他们的研究中,研究人员专注于非策略强化学习算法,其中数据收集和模型训练过程是分开的。强化学习使用“重放缓冲区”来解相关输入轨迹,并使强化学习代理可以从同一组数据中探索许多不同的轨迹。  

非策略强化学习对于许多实际应用程序尤其重要,在这些应用程序中,训练数据预先存在并提供给正在训练强化学习模型的机器学习团队。非策略强化学习对于创建成员推理攻击模型也至关重要。

研究表明强化学习模型容易受到成员推理攻击

非策略强化学习使用“重放缓冲区”在模型训练期间重用先前收集的数据

作者说,“探索和开发阶段在真正的非策略强化学习模型中是分离的。因此,目标策略不会影响训练轨迹。这种设置特别适合在黑盒环境中设计成员推理攻击框架时,因为攻击者既不知道目标模型的内部结构,也不知道用于收集训练轨迹的探索策略。”  

在黑盒成员推理攻击中,攻击者只能观察训练好的强化学习模型的行为。在这种特殊情况下,攻击者假设目标模型已经从一组私有数据生成的轨迹上进行了训练,这就是非策略强化学习的工作原理。  

研究表明强化学习模型容易受到成员推理攻击

在研究中,研究人员选择了“批量约束深度Q学习”(BCQ),这是一种先进的非策略强化学习算法,在控制任务中表现出卓越的性能。然而他们表示,他们的成员推理攻击技术可以扩展到其他非策略强化学习模型。  

攻击者进行成员推理攻击的一种方法是开发“影子模型”。这是一个分类器机器学习模型,它已经在来自与目标模型的训练数据和其他地方的相同分布的数据混合上进行了训练。在训练之后,影子模型可以区分属于目标机器学习模型训练集的数据点和模型以前未见过的新数据。由于目标模型训练的顺序性,为强化学习代理创建影子模型很棘手。研究人员通过几个步骤实现了这一点。  

首先,他们为强化学习模型训练器提供一组新的非私有数据轨迹,并观察目标模型生成的轨迹。然后,攻击训练器使用训练和输出轨迹来训练机器学习分类器,以检测在目标强化学习模型训练中使用的输入轨迹。最后,为分类器提供了新的轨迹,将其分类为训练成员或新的数据示例。  

研究表明强化学习模型容易受到成员推理攻击

针对强化学习模型训练成员推理攻击的影子模型

针对强化学习系统测试成员推理攻击

研究人员以不同的模式测试了他们的成员推理攻击,其中包括不同的轨迹长度、单轨迹与多轨迹,以及相关轨迹与去相关轨迹。  

研究人员在他们的论文中指出:“研究结果表明,我们提出的攻击框架在推断强化学习模型训练数据点方面非常有效……获得的结果表明,采用深度强化学习时存在很高的隐私风险。”  

他们的研究结果表明,具有多条轨迹的攻击比单一轨迹的攻击更有效,并且随着轨迹变长并相互关联,攻击的准确性也会提高。

作者说,“自然设置当然是个体模型,攻击者有兴趣在用于训练目标强化学习策略的训练集中识别特定个体的存在(在强化学习中设置整个轨迹)。然而,成员推理攻击(MIA)在集体模式下的更好表现表明,除了由训练策略的特征捕获的时间相关性之外,攻击者还可以利用目标策略的训练轨迹之间的互相关性。”

研究人员表示,这也意味着攻击者需要更复杂的学习架构和更复杂的超参数调整,以利用训练轨迹之间的互相关和轨迹内的时间相关性。

研究人员说,“了解这些不同的攻击模式,可以让我们更深入地了解对数据安全和隐私的影响,因为它可以让我们更好地了解可能发生攻击的不同角度以及对隐私泄露的影响程度。”

现实世界中针对强化学习系统的成员推理攻击  

研究表明强化学习模型容易受到成员推理攻击

研究人员测试了他们对基于Open AIGym和MuJoCo物理引擎的三项任务训练的强化学习模型的攻击。  

研究人员说,“我们目前的实验涵盖了三个高维运动任务,Hopper、Half-Cheetah和Ant,这些任务都属于机器人模拟任务,主要推动将实验扩展到现实世界的机器人学习任务。”  

该论文的研究人员表示,另一个应用成员推断攻击的令人兴奋的方向是对话系统,例如亚马逊Alexa、苹果Siri和谷歌助理。在这些应用程序中,数据点由聊天机器人和最终用户之间的完整交互轨迹呈现。在这一设置中,聊天机器人是经过训练的强化学习策略,用户与机器人的交互形成输入轨迹。  

作者说,“在这种情况下,集体模式就是自然环境。换句话说,当且仅当攻击者正确推断出代表训练集中用户的一批轨迹时,攻击者才能推断出用户在训练集中的存在。”

该团队正在探索此类攻击可能影响强化学习系统的其他实际应用程序。他们可能还会研究这些攻击如何应用于其他环境中的强化学习。  

作者说,“这一研究领域的一个有趣扩展是在白盒环境中针对深度强化学习模型研究成员推理攻击,其中目标策略的内部结构也为攻击者所知。”

研究人员希望他们的研究能够阐明现实世界中强化学习应用程序的安全和隐私问题,并提高机器学习社区的意识,以便在该领域开展更多研究。

原文标题:Reinforcement learning models are prone to membership inference attacks​,作者:Ben Dickson

以上就是《研究表明强化学习模型容易受到成员推理攻击》的详细内容,更多关于算法,机器学习,安全的资料请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
两亿台摄像头将智能机器视觉推向边缘两亿台摄像头将智能机器视觉推向边缘
上一篇
两亿台摄像头将智能机器视觉推向边缘
修复 iPhone 或 iPad 上的 YouTube“出了点问题,点击重试”错误
下一篇
修复 iPhone 或 iPad 上的 YouTube“出了点问题,点击重试”错误
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    3次使用
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    26次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    21次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    23次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    23次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码