BERT在CNN上也能用?字节跳动研究成果中选ICLR 2023 Spotlight
编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《BERT在CNN上也能用?字节跳动研究成果中选ICLR 2023 Spotlight》,文章讲解的知识点主要包括,如果你对科技周边方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。
如何在卷积神经网络上运行 BERT?
你可以直接用 SparK —— 字节跳动技术团队提出的稀疏层次化掩码建模 (Designing BERT for Convolutional Networks: Sparse and Hierarchical Masked Modeling),近期已被人工智能顶会收录为 Spotlight 焦点论文:
论文链接:
https://arxiv.org/pdf/2301.03580
开源代码:
https://github.com/keyu-tian/SparK
这也是 BERT 在卷积神经网络 (CNN) 上的首次成功。先来感受一下 SparK 在预训练中的表现吧。
输入一张残缺不全的图片:
还原出一只小狗:
另一张残缺图片:
原来是贝果三明治:
其他场景也可实现图片复原:
BERT 和 Transformer 的天作之合
“任何伟大的行动和思想,都有一个微不足道的开始。”
在 BERT 预训练算法的背后,是简洁而深刻的设计。 BERT 使用“完形填空”:将一句话中的若干词语进行随机删除,并让模型学会恢复。
BERT 非常依赖于 NLP 领域的核心模型 —— Transformer。
Transformer 由于生来就适合处理可变长度的序列数据(例如一个英文句子),所以能轻松应付 BERT 完形填空的“随机删除”。
视觉领域的 CNN 也想享受 BERT:两个挑战何在?
回顾计算机视觉发展史,卷积神经网络模型凝练了平移等变性、多尺度结构等等众多经典模型精华,可谓CV 界的中流砥柱。但与 Transformer 大相径庭的是,CNN 天生无法适应经过完形填空“挖空”的、充满“随机孔洞”的数据,因此乍一看无法享受到 BERT 预训练的红利。
上图 a. 展示的是 MAE (Masked Autoencoders are Scalable Visual Learners) 这项工作,由于使用的是 Transformer 模型而非 CNN 模型,其可以灵活应对经过带有空洞的输入,乃与 BERT “天作之合”。
而右图 b. 则展示了一种粗暴融合 BERT 和 CNN 模型的方式——即把全部空洞区域“涂黑”,并将这张“黑马赛克”图输入到 CNN 中,结果可想而知,会带来严重的像素强度分布偏移问题,并导致很差的性能 (后文有验证)。这就是阻碍 BERT 在 CNN 上成功应用的挑战一。
此外,作者团队还指出,源自 NLP 领域的 BERT 算法,天然不具备“多尺度”的特点,而多尺度的金字塔结构在计算机视觉的悠久历史中可谓“金标准”。单尺度的 BERT,和天然多尺度的 CNN 之间的冲突,则是挑战二。
解决方案 SparK:稀疏且层次化的掩码建模
作者团队提出了 SparK (Sparse and hierarchical masKed modeling) 来解决前文两个挑战。
其一,受三维点云数据处理的启发,作者团队提出将经过掩码操作 (挖空操作) 后的零碎图片视为稀疏点云,并使用子流形稀疏卷积 (Submanifold Sparse Convolution) 来进行编码。这就让卷积网络能够自如处理随机删除后的图像。
其二,受 UNet 优雅设计的启发,作者团队自然地设计了一种带有横向连接的编码器-解码器模型,让多尺度特征在模型的多层次之间流动,让 BERT 彻底拥抱计算机视觉的多尺度黄金标准。
至此,一种为卷积网络 (CNN) 量身定制的稀疏的、多尺度的掩码建模算法 SparK 诞生了。
SparK 是通用的:其可被直接运用在任何卷积网络上,而无需对它们的结构进行任何修改,或引入任何额外的组件——不论是我们耳熟能详的经典 ResNet,还是近期的先进模型 ConvNeXt,均可直接从 SparK 中受益。
从 ResNet 到 ConvNeXt:三大视觉任务性能提升
作者团队选择了具代表性的两个卷积模型家族 ResNet 和 ConvNeXt,并在图像分类,目标检测、实例分割任务上进行了性能测试。
在经典 ResNet-50 模型上,SparK 作为唯一的生成式预训练,达到了 State-of-the-art 水准:
在 ConvNeXt 模型上,SparK 依旧领先。在预训练前,ConvNeXt 与 Swin-Transformer 平分秋色;而经预训练后,ConvNeXt 在三个任务上均压倒性超过了 Swin-Transformer:
当从小到大,在完整的模型家族上验证 SparK,便可观察到:
无论模型的大与小、新与旧,均可从 SparK 中受益,且随着模型尺寸/训练开销的增长,涨幅甚至更高,体现出 SparK 算法的扩放 (scaling) 能力:
最后,作者团队还设计了一个验证性的消融实验,从中可见稀疏掩码和层次化结构第3行和第4行) 均是非常关键的设计,一旦缺失就会造成严重的性能衰退:
到这里,我们也就讲完了《BERT在CNN上也能用?字节跳动研究成果中选ICLR 2023 Spotlight》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于字节跳动,BERT,卷积神经网络的知识点!

- 上一篇
- 如何在 Windows 11 中停止将文件保存到 OneDrive

- 下一篇
- 人工智能技术和创意如何在营销中交织在一起
-
- 科技周边 · 人工智能 | 19分钟前 |
- 特斯拉ModelQ路测图曝光?法拉第未来:这是我们的车
- 371浏览 收藏
-
- 科技周边 · 人工智能 | 21分钟前 |
- 3步入门通灵义码基础使用教程
- 100浏览 收藏
-
- 科技周边 · 人工智能 | 30分钟前 |
- 即梦ai智能绘图工具使用教程及AI绘图技巧
- 374浏览 收藏
-
- 科技周边 · 人工智能 | 49分钟前 |
- 路虎“小卫士”纯电SUV曝光对标“小G”
- 459浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 小米SU7上周交付7160台,紧随理想零跑
- 420浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 即梦ai音频音量调整技巧声音轨道编辑攻略
- 302浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 2025年4月末全国乘用车库存350万辆,57天消化完毕
- 365浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 魔匠AI
- SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
- 22次使用
-
- PPTFake答辩PPT生成器
- PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
- 38次使用
-
- Lovart
- SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
- 52次使用
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 47次使用
-
- PetGPT
- SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
- 47次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览