当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 如何生成「好」的图?面向图生成的深度生成模型系统综述

如何生成「好」的图?面向图生成的深度生成模型系统综述

来源:51CTO.COM 2023-04-16 18:30:01 0浏览 收藏

在科技周边实战开发的过程中,我们经常会遇到一些这样那样的问题,然后要卡好半天,等问题解决了才发现原来一些细节知识点还是没有掌握好。今天golang学习网就整理分享《如何生成「好」的图?面向图生成的深度生成模型系统综述》,聊聊,希望可以帮助到正在努力赚钱的你。

图片

https://www.zhuanzhi.ai/paper/a904f0aa0762e65e1dd0b8b464df7168

图是描述对象及其关系的重要数据表示形式,它们出现在各种各样的现实场景中。图生成是该领域的关键问题之一,它考虑的是学习给定图的分布,生成更多新的图。然而,由于其广泛的应用,具有丰富历史的图的生成模型传统上是手工制作的,并且只能对图的一些统计属性建模。

最近在用于图生成的深度生成模型方面的进展是提高生成图的保真度的重要一步,并为新类型的应用铺平了道路。本文对用于图生成的深度生成模型领域的文献进行了广泛的概述。首先,给出了面向图生成的深度生成模型的形式化定义和初步知识;其次,分别提出了用于无条件和条件图生成的深度生成模型的分类;对各自已有的工作进行了比较分析。在此之后,将概述此特定领域中的评估指标。最后,总结了深度图生成的应用,并指出了五个有发展前景的研究方向。 

引言

图在现实世界中无处不在,表示对象及其关系,如社会网络、引文网络、生物网络、交通网络等。众所周知,图还具有复杂的结构,其中包含丰富的底层值[1]。人们在这方面做出了巨大的努力,产生了丰富的相关文献和处理各种图问题的方法。

这些工作可分为两类:1)预测和分析给定图的模式。2)学习给定图的分布,生成更多新颖的图。第一种类型涵盖了许多研究领域,包括节点分类、图分类和链接预测。在过去的几十年里,在这个领域已经做了大量的工作。与第一类问题相比,第二类问题与图生成问题有关,这也是本文的重点。

图生成包括建模和生成真实世界的图的过程,它在几个领域都有应用,例如理解社交网络[2],[3],[4]中的交互动态,异常检测[5],蛋白质结构建模[6],[7],源代码生成和翻译[8],[9],语义解析[10]。由于其广泛的应用,图的生成模型的发展有着丰富的历史,产生了著名的模型,如随机图、小世界模型、随机块模型和贝叶斯网络模型,这些模型基于先验结构假设[11]生成图。这些图生成模型[12]、[13]、[14]旨在建模预先选择的图族,如随机图[15]、小世界网络[16]和无标度图[12]。然而,由于其简单性和手工制作的性质,这些随机图模型通常对复杂依赖的建模能力有限,只能对图的一些统计属性建模。

这些方法通常很适合预定义原则为之量身定制的属性,但通常不能很好地适用于其他属性。例如,接触网络模型可以拟合流感流行,但不能拟合动态功能连接。然而,在许多领域,网络的性质和生成原理在很大程度上是未知的,如那些解释大脑网络中的精神疾病的机制,网络攻击和恶意软件的传播。对于另一个例子,Erdos-Renyi的图没有许多现实世界网络中典型的重尾度分布。此外,先验假设的使用限制了这些传统技术在更大规模的领域中探索更多的应用,在这些领域中,图的先验知识总是不可用。

考虑到传统图生成技术的局限性,一个关键的开放挑战是开发可以从观察到的图集合中直接学习生成模型的方法,这是提高生成图的保真度的重要一步。它为新类型的应用铺平了道路,如发现新的药物[17],[18],和蛋白质结构建模[19],[20],[21]。深度生成模型的最新进展,如变分自编码器(VAE)[22]和生成对抗网络(GAN)[23],已被提出用于生成图的许多深度学习模型,这些模型形式化了用于生成图的深度生成模型的有前途的领域,这是本综述的重点。

在深度图生成方面已经开展了各种先进的工作,从一次性图生成到顺序图生成过程,适应了各种深度生成学习策略。这些方法旨在通过不同领域的工作解决上述挑战中的一个或几个,包括机器学习、生物信息学、人工智能、人类健康和社交网络挖掘。但是,不同的研究领域开发的方法往往使用不同的词汇,从不同的角度解决问题。

此外,缺乏标准和全面的评估程序来验证所开发的图的深度生成模型。为此,本文对用于图生成的深度生成模型进行了系统的综述。目的是帮助跨学科研究者选择合适的技术来解决其应用领域的问题,更重要的是帮助图生成研究者理解图生成的基本原理,并识别深度图生成领域的开放研究机会。据我们所知,这是第一次对用于图生成的深度生成模型的全面综述。下面,我们总结了这次综述的主要贡献:

本文提出一种用于图生成的深度生成模型分类法,按问题设置和方法进行分类。介绍了不同子类别之间的优缺点和关系。对用于图生成的深度生成模型以及基础的深度生成模型进行了详细的描述、分析和比较。

  • 我们总结和分类现有的评估程序和指标,基准数据集和对应的图生成任务的深度生成模型的结果。
  • 我们介绍了图深度生成模型的现有应用领域,以及它们给这些应用带来的潜在好处和机会。
  • 我们提出了用于图生成的深度生成模型领域的几个开放问题和有前途的未来研究方向。

图片

用于图生成的无条件深度生成模型

无条件深度图生成的目的是通过深度生成模型从真实分布p(G)中抽样的一组观察到的真实图来学习分布pmodel(G)。根据生成过程的风格,我们可以将这些方法分为两个主要分支:(1)顺序生成:按顺序依次生成节点和边;(2)一次生成:根据矩阵表示建立一个概率图模型,一次生成所有节点和边。这两种生成图的方法各有优缺点。顺序生成虽然高效地执行了前一种生成的局部决策,但在保持长期依赖性方面存在困难。因此,图的一些全局属性(如无标度属性)很难包含进去。此外,现有的关于序列生成的工作仅限于预先定义的序列的顺序,从而留下了排列的作用。一次性生成方法可以通过多次迭代同步生成和细化整个图(即节点和边),从而对图的全局属性进行建模,但由于需要对节点之间的全局关系进行集体建模,其时间复杂度通常超过O(N2),因此大多数方法难以扩展到大型图。

图片

用于图生成的条件深度生成模型

条件深度图生成的目标是根据观察到的一组现实图G及其对应的辅助信息(即条件y)学习条件分布pmodel(G|y)。辅助信息可以是类别标签、语义上下文、来自其他分布空间的图等。与无条件深度图生成相比,条件生成除了在生成图方面的挑战外,还需要考虑如何从给定条件中提取特征并将其整合到图的生成中。

因此,为了系统地介绍现有的条件深度图生成模型,我们主要描述这些方法如何处理条件。由于条件可以是任何形式的辅助信息,因此它们被分为三种类型,包括图、序列和语义上下文,如图1中分类法树的黄色部分所示

图片

以上就是《如何生成「好」的图?面向图生成的深度生成模型系统综述》的详细内容,更多关于模型,深度学习的资料请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
为机器学习模型设置最佳阈值:0.5是二元分类的最佳阈值吗为机器学习模型设置最佳阈值:0.5是二元分类的最佳阈值吗
上一篇
为机器学习模型设置最佳阈值:0.5是二元分类的最佳阈值吗
预计 MacBook Air 不会出现一系列类似 iMac 的颜色
下一篇
预计 MacBook Air 不会出现一系列类似 iMac 的颜色
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    21次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    18次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    17次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    20次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    22次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码