当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 如何使用ROS 2简化机器人的硬件加速

如何使用ROS 2简化机器人的硬件加速

来源:51CTO.COM 2023-05-02 21:43:59 0浏览 收藏

本篇文章向大家介绍《如何使用ROS 2简化机器人的硬件加速》,主要包括,具有一定的参考价值,需要的朋友可以参考一下。

译者 | 李睿

审校 | 孙淑娟

在开发机器人时,系统集成往往占用了大部分的项目资源,这比开发最终应用程序还要重要。随着低端工业协作机器人的出现,出现了只专注于开发在现有硬件上运行的软件开发商。然而,机器人的硬件和软件能力之间存在着一个至关重要的关系。需要保留对计算硬件的设计控制,以创建更专业、更节能、安全和高性能的机器人。  

如何使用ROS 2简化机器人的硬件加速

硬件挑战和软件技能  

如果机器人专家希望交付未来需要的更好、更快的机器人,就必须克服硬件面临的障碍。在后摩尔时代的计算世界中,升级硬件以采用最新一代微处理器无法实现所需的应用程序性能升级。其前进的道路不再在于等待最新的芯片。硬件加速通常是获得必要收益的唯一途径。  

这种硬件挑战使机器人等学科的开发人员的工作变得更加复杂,他们的技能往往偏向于开发软件。这意味着如果他们要满足市场对新型工业机器人的需求,就必须面对设计自适应计算硬件的前景。在生产线和仓库等领域使用机器人来提高生产力的企业,正在寻找能够提供额外灵活性、更精细的位置控制、卓越的基于视觉的能力、改进的数据捕获和更低功耗的设备。  

机器人硬件加速的主要原理是,与传统的控制驱动方法不同,用于软件开发的混合控制和数据驱动方法允许团队设计自定义计算架构,为应用程序分配最佳数量的硬件资源。  

就实现而言,需要异构计算模型。这利用了CPU和GPU的优势,它们在控制流计算方面表现出色,同时利用FPGA的优势来处理数据流计算。这种方法同时提供了对CPU/GPU的灵活性和完全控制,以实现复杂的计算,具有低功耗、高性能、低延迟和硬件加速的确定性。现在,各种供应商都在提供自适应片上系统(SoC)和系统级模块(SOM)设备,例如AMD-Xilinx Kria™SOM及其相关的Kria机器人堆栈,它们提供了这种混合计算模型的优势.该表比较了这些不同的模型。  

如何使用ROS 2简化机器人的硬件加速

自适应片上系统(SoC)和系统级模块(SOM)允许机器人专家通过对创建正确数据路径和控制机制的架构进行编程来构建机器行为。然而,需要复杂的工程技能来使用既定的工具和技术对此类架构进行编程。

机器人专家缺乏合适的硬件和嵌入式设计专业知识,他们习惯于以计算图的形式构建行为,以解决当前的机器人任务。他们经常使用C++通过高级软件工程实践来创建复杂的实时确定性系统。

建立在机器人操作系统(ROS)之上  

现在需要一种不同的方法来帮助机器人专家利用可用的硬件加速技术。在理想情况下,这种方法应该让他们在熟悉的开发环境(例如ROS)中创建自定义硬件,并使用熟悉的工具(例如Gazebo)进行模拟。

ROS是机器人应用程序开发的事实上的行业标准,自从2020年ROS2问世以来更是如此。这已成为跨行业机器人应用程序的默认软件开发工具包(SDK),许多团体现在都在使用ROS和Gazebo。  

以前将自适应计算集成到ROS中的举措已经从硬件工程师的角度解决了这一挑战。他们假设用户以前有嵌入式和硬件流程方面的经验,因此熟悉RTL、HDL和HLS等概念以及用于操作它们的设计工具。同样,部署到嵌入式目标需要对Yocto、OpenEmbedded和相关工具有一定的了解。  

了解大多数机器人专家并非来自这一背景,ROS2硬件加速工作组(HAWG)正在采用以ROS为中心的方法,将嵌入式流程直接集成到ROS生态系统中。它的目标是提供类似于机器人专家在桌面工作站中构建ROS工作区时所享受的体验。  

HAWG的工作建立在已发表的关于优化ROS计算图以利用自适应计算的研究,以及在可编程逻辑中加速部分图的工具和方法的建议之上。除此之外,HAWG现在正在提出一种架构(如下图所示),该架构专注于C++和OpenCL等熟悉的语言。  

如何使用ROS 2简化机器人的硬件加速

ROS 2和HAWG堆栈一起促进了硬件加速

所提出的架构与平台无关,因此适用于边缘设施、工作站、数据中心或云计算平台,而且与技术无关,以允许针对FPGA、CPU和GPU以及易于移植到各种模块和主板。  

最终,这项工作应该使大多数机器人专家能够利用硬件加速的机会来实现下一代先进和复杂的机器人。

原文标题:Simplifying hardware acceleration for robots with ROS 2,作者:Ben Dickson

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于科技周边的相关知识,也可关注golang学习网公众号。

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
首个标注详细解释的多模态科学问答数据集,深度学习模型推理有了思维链首个标注详细解释的多模态科学问答数据集,深度学习模型推理有了思维链
上一篇
首个标注详细解释的多模态科学问答数据集,深度学习模型推理有了思维链
从头开始构建,DeepMind新论文用伪代码详解Transformer
下一篇
从头开始构建,DeepMind新论文用伪代码详解Transformer
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    6次使用
  • MeowTalk喵说:AI猫咪语言翻译,增进人猫情感交流
    MeowTalk喵说
    MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
    6次使用
  • SEO标题Traini:全球首创宠物AI技术,提升宠物健康与行为解读
    Traini
    SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
    6次使用
  • 可图AI 2.0:快手旗下新一代图像生成大模型,专业创作者与普通用户的多模态创作引擎
    可图AI 2.0图片生成
    可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
    13次使用
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    25次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码