当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 被GPT带飞的In-Context Learning发展现状如何?这篇综述梳理明白了

被GPT带飞的In-Context Learning发展现状如何?这篇综述梳理明白了

来源:51CTO.COM 2023-04-30 20:15:36 0浏览 收藏
推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

科技周边不知道大家是否熟悉?今天我将给大家介绍《被GPT带飞的In-Context Learning发展现状如何?这篇综述梳理明白了》,这篇文章主要会讲到等等知识点,如果你在看完本篇文章后,有更好的建议或者发现哪里有问题,希望大家都能积极评论指出,谢谢!希望我们能一起加油进步!

随着语言模型和语料库规模的逐渐扩大,大型语言模型(LLM)展现出更多的潜力。近来一些研究表明,LLM 可以使用 in-context learning(ICL)执行一系列复杂任务,例如解决数学推理问题。

来自北京大学、上海 AI Lab 和加州大学圣巴巴拉分校的十位研究者近期发布了一篇关于 in-context learning 的综述论文,详细梳理了 ICL 研究的当前进展。

图片

论文地址:​https://arxiv.org/pdf/2301.00234v1.pdf​

in-context learning 的核心思路是类比学习,下图描述了语言模型如何使用 ICL 进行决策。

图片

首先,ICL 需要一些样例来形成演示语境,这些样例通常用自然语言模板编写。然后,ICL 将查询问题和演示语境相联系,形成 prompt,并且将其输入语言模型进行预测。与监督学习需要使用反向梯度更新模型参数的训练阶段不同,ICL 不需要参数更新即可使预训练语言模型直接执行预测任务,并且模型有望学习演示样例中隐藏的模式,并据此做出正确的预测。

作为一种新的范式,ICL 有很多吸引人的优势。首先,演示样例用自然语言格式编写,这为与大语言模型关联提供了一个可解释的接口。通过改变演示样例和模板(Liu et al., 2022; Lu et al., 2022; Wu et al., 2022; Wei et al., 2022c),这种范式使将人类知识纳入语言模型变得更加容易。第二,in-context learning 类似于人类通过类比学习的决策过程。第三,与监督式训练相比,ICL 是一个无需训练的学习框架。这不仅可以大大降低模型适应新任务的计算成本,而且还可以使语言模型即服务(LMaaS,Sun et al., 2022)成为可能,并轻松应用于大规模的现实任务。

尽管 ICL 有着大好的前景,但仍存在许多值得探究的问题,包括它的性能。例如原始的 GPT-3 模型就具备一定的 ICL 能力,但一些研究发现,通过预训练期间的适应,这种能力还可以获得显著的提升。此外,ICL 的性能对特定的设置很敏锐,包括 prompt 模板、语境样例的选择和样例顺序等。此外,ICL 的工作机制虽然看似合理,但仍不够清晰明了,能够初步解释其工作机制的研究也不多。

本篇综述论文总结道,ICL 的强大性能依赖于两个阶段:

  • 培养大型语言模型 ICL 能力的训练阶段;
  • 大型语言模型根据特定任务演示进行预测的推理阶段。

在训练阶段,语言模型直接按照语言建模目标进行训练,例如从左到右的生成。尽管这些模型并没有专门针对 in-context learning 进行优化,但 ICL 的能力依旧令人惊喜。现有的 ICL 研究基本以训练良好的语言模型为主干。

在推理阶段,由于输入和输出的 label 都是用可解释的自然语言模板表征的,因此 ICL 性能可以从多个角度得到优化。该综述论文进行了详细的描述和比较,并选择合适的例子进行演示,针对不同的任务设计具体的评分方法。

这篇综述论文的大致内容和结构如下图所示,包括:ICL 的正式定义 (§3)、warmup 方法 (§4)、prompt 设计策略 (§5) 和评分函数 (§6)。

图片

此外,§7 深入阐述了当前为揭开 ICL 背后工作原理所做的探索。§8 进一步为 ICL 提供了有用的评估与资源,§9 介绍了能显示出 ICL 有效性的潜在应用场景。最后,§10 总结了 ICL 领域存在的挑战和潜在的方向,为该领域的进一步发展提供参考。

感兴趣的读者可以阅读论文原文,了解更多研究细节。

以上就是《被GPT带飞的In-Context Learning发展现状如何?这篇综述梳理明白了》的详细内容,更多关于模型,论文的资料请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
一张快照就能还原出一段视频!AAAI 2023论文提出快照压缩成像新算法一张快照就能还原出一段视频!AAAI 2023论文提出快照压缩成像新算法
上一篇
一张快照就能还原出一段视频!AAAI 2023论文提出快照压缩成像新算法
Meta AI开放6亿+宏基因组蛋白质结构图谱,150亿语言模型用两周完成
下一篇
Meta AI开放6亿+宏基因组蛋白质结构图谱,150亿语言模型用两周完成
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3212次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3425次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3455次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4564次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3832次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码