AI为人类开药方:准确预测9000名癌症患者适用药物!成果登上Nature子刊,出自华人团队
小伙伴们对科技周边编程感兴趣吗?是否正在学习相关知识点?如果是,那么本文《AI为人类开药方:准确预测9000名癌症患者适用药物!成果登上Nature子刊,出自华人团队》,就很适合你,本篇文章讲解的知识点主要包括。在之后的文章中也会多多分享相关知识点,希望对大家的知识积累有所帮助!
只需一个AI,9808名癌症患者对药物的临床反应,全能预测。
而且结果和临床观察表现一致。
这就是由纽约市立大学Lei Xie团队带来的最新成果CODE-AE(context-aware deconfounding autoencoder)。
它提出一种新型的上下文自编码模型,可以预测不同患者对药物的特异性反应。
这将对新药开发和临床试验产生重大影响。
要知道,传统模式下一种新药开发、试验、完全上市,中间需要近10年的时间,消耗的资金也空前庞大,动辄就是10亿美元。
周期会如此之长,是因为新药在人体内的反应难以预测,往往需要反复试验进行测试。
而如果AI能够利用数据进行预测,将大幅缩短新药上市时间,降低成本。
目前,该研究登上Nature子刊《Nature Machine Intelligence》。
简单来说,CODE-AE是利用新药在体外细胞验证上的数据,来预测药物在人体身上会产生的反应。
这样就避免了AI模型训练对患者临床数据的依赖。
过去AI在临床反应预测上效果一直不算好的最大原因,便是想要收集海量、连续临床反应数据实在是太难了。
从机制上来看,研究人员将药物生物标志物分为了源域(source domain)和目标域(target domain)。
源域表示和测试样本不同的领域,但是有丰富的监督信息,在这里可以理解为体外细胞验证的数据。
目标域是测试样本所在的领域,无标签或只有少量标签,也就是患者数据。
将不同领域的数据特征映射到同一个特征空间,使其在该空间中的距离尽可能近。
于是在特征空间中对源域训练的目标函数,就可以迁移到目标域,提高目标域上的准确率。
放在该研究背景下,源域和目标域都是药物生物标志物的数据特征,即药物靶标的数据特征。
具体来看模型框架,主要分为三个部分:预训练、微调和推理。
预训练主要用了自监督学习,构建一个特征编码模块,将体外细胞数据和患者数据的未标记基因表达谱,映射到嵌入空间中。这样一来可以把一些混杂因素排除掉,让两种数据的潜入分布一致,以消除系统偏差。
微调阶段,是在预训练的基础上再加一个监督模型,并利用已经标记的体外细胞数据来进行训练。
最后在推理阶段,先从预训练中获得的患者去歧对其嵌入,然后再利用调优后的模型,来预测患者对药物的反应。
在这种模式下,CODE-AE具备两个特点。
第一,它可以提取不连贯样本中的常见生物信号和私有表示,从而排除掉由于数据模式不同带来的干扰。
第二,将药物响应信号和混杂因素分离后,还可以实现局部对齐。
总结来看,CODE-AE可以理解为在标记和无标记数据的非相干数据模式嵌入空间中,选择唯一特征的过程。
为了论证模型的有效性,研究人员对9808位癌症患者的药物适用情况进行预测。
如果模型对患者情况预测出的位点结果,和他使用的药物靶点有关,就证明预测是正确的。
然后,研究人员将患者分为100个聚类,将59种药物也分为30个聚类。
通过这种分析方法,可以让具有相似药物反应谱的患者被分在一起。
在此,我们以肺鳞状细胞癌患者(LSCC)和非小细胞肺癌患者(NSCLC)的聚类为例。
在59种药物中,LSCC最敏感的药物为吉非替尼、AICAR和吉西他滨。
其中吉非替尼、AICAR的作用靶点都是一种表皮生长因子受体(EGFR),吉西他滨常被用于没有EGFR突变的非小细胞肺癌治疗。
论文表示,和这些药物作用模式一致,CODE-AE发现使用吉非替尼、AICAR的患者,药物反应图谱相似。
也就是说,CODE-AE发现了患者治疗的正确靶点,即可以预测适用药物。
如上研究团队来自纽约市立大学。
通讯作者为Lei Xie,他本科毕业于中国科学技术大学高分子物理专业。
硕士毕业于罗格斯大学计算机科学专业;博士同在罗格斯大学,但拿的是化学系学位。
据了解,该研究团队下一步将开发CODE-AE对新药临床反应在浓度、代谢方面的预测功能。
研究人员表示,该AI模型还有可能被调整为用于预测药物对人体的副作用影响。
值得一提的是,Nature子刊《Nature Machine Intelligence》专门关注人工智能和生命科学跨学科应用研究,每年收录论文平均数量在60篇左右。
论文地址:https://www.nature.com/articles/s42256-022-00541-0
参考链接:https://phys.org/news/2022-10-ai-accurately-human-response-drug.html
本篇关于《AI为人类开药方:准确预测9000名癌症患者适用药物!成果登上Nature子刊,出自华人团队》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!

- 上一篇
- DBD: 基于分割后门训练过程的后门防御方法

- 下一篇
- T前线 | 专访腾讯AILab:将成果由“点”到“线”,实验室不止于实验
-
- 科技周边 · 人工智能 | 36秒前 |
- AI剪辑入门指南:零基础也能做视频
- 175浏览 收藏
-
- 科技周边 · 人工智能 | 35分钟前 |
- AI证件照生成原理全解析
- 152浏览 收藏
-
- 科技周边 · 人工智能 | 36分钟前 | 性能优化 动态背景 VisionStory 视觉叙事 粒子效果
- VisionStory粒子效果教程动态背景制作教程
- 116浏览 收藏
-
- 科技周边 · 人工智能 | 40分钟前 |
- 豆包AI代码生成方法豆包编程教程详解
- 254浏览 收藏
-
- 科技周边 · 人工智能 | 58分钟前 |
- DeepSeekAPI调用教程与使用方法
- 413浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 | 数据分析 线下活动 转化率 DecktopusAI 事前问卷
- DecktopusAI如何制作高转化问卷?
- 463浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 小米SU7保值率88.91%引热议
- 200浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- AI模型数据工具怎么配合豆包使用?详细教程
- 335浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 152次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 146次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 159次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 155次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 163次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览