当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 仅需10%参数量即超越SOTA!浙大、字节、港中文联合提出「类别级位姿估计」任务新框架

仅需10%参数量即超越SOTA!浙大、字节、港中文联合提出「类别级位姿估计」任务新框架

来源:51CTO.COM 2023-04-14 13:41:35 0浏览 收藏

欢迎各位小伙伴来到golang学习网,相聚于此都是缘哈哈哈!今天我给大家带来《仅需10%参数量即超越SOTA!浙大、字节、港中文联合提出「类别级位姿估计」任务新框架》,这篇文章主要讲到等等知识,如果你对科技周边相关的知识非常感兴趣或者正在自学,都可以关注我,我会持续更新相关文章!当然,有什么建议也欢迎在评论留言提出!一起学习!

赋予机器人对日常物体的 3D 理解是机器人应用中的一项重大挑战。

在未知环境中进行探索时,由于物体形状的多样性,现有的物体位姿估计方法仍然不能令人满意。

图片

最近浙江大学、字节跳动人工智能实验室和香港中文大学的研究者联合提出了一个新的框架,用于从单个 RGB-D 图像进行类别级物体形状和位姿估计。

图片

论文地址:​https://arxiv.org/abs/2210.01112​

项目链接:​https://zju3dv.github.io/gCasp​

为了处理类别内物体的形状变化,研究人员采用语义原始表示,将不同的形状编码到一个统一的隐空间中,这种表示是在观察到的点云和估计的形状之间建立可靠对应关系的关键。

然后通过设计的对刚体相似变换不变的形状描述子,解耦了物体的形状和位姿估计,从而支持任意位姿中目标物体的隐式形状优化。实验表明所提出的方法在公开数据集中实现了领先的位姿估计性能

研究背景

在机器人的感知与操作领域,估计日常物体的形状和位姿是一项基本功能,并且具有多种应用,其中包括 3D 场景理解、机器人操作和自主仓储。

该任务的早期工作大多集中在实例级位姿估计上,这些工作主要通过将观察到的物体与给定的 CAD 模型对齐来获得物体位姿。

然而,这样的设置在现实世界的场景中是有限的,因为很难预先获得一个任意给定物体的确切模型。

为了推广到那些没见过但是在语义上熟悉的物体,类别级别物体位姿估计正在引起越来越多的研究关注,因为它可以潜在地处理真实场景中同一类别的各种实例。

图片

现有的类别级位姿估计方法通常尝试预测一个类中实例的像素级归一化坐标,或者采用形变之后的参考先验模型来估计物体位姿。

尽管这些工作已经取得了很大的进步,但是当同一类别中存在较大的形状差异时,这些一次性预测方法仍然面临困难。

为了处理同一类内物体的多样性,一些工作利用神经隐式表示,通过迭代优化隐式空间中的位姿和形状来适应目标物体的形状,并获得了更好的性能。

在类别级物体位姿估计中有两个主要挑战,一是巨大的类内形状差异,二是现有的方法将形状和位姿的耦合在一起进行优化,这样容易导致优化问题更加复杂。

在这篇论文中,研究人员通过设计的对刚体相似变换不变的形状描述子,解耦了物体的形状和位姿估计,从而支持任意位姿中目标物体的隐式形状优化。最后再根据估计形状与观测之间的语义关联,求解出物体的尺度与位姿。

算法介绍

算法由三个模块组成,语义原语提取生成式形状估计物体位姿估计

图片

算法的输入是单张 RGB-D 图像,算法使用预先训练好的 Mask R-CNN 获得 RGB 图像的语义分割结果,然后根据相机内参反投影得到每个物体的点云。该方法主要对点云进行处理,最终求得每个物体的尺度与6DoF位姿。

语义原语提取

DualSDF[1] 中提出了一种针对同类物体的语义原语的表示方法。如下图左所示,在同一类物体中,每个实例都被分成了一定数量的语义原语,每个原语的标签对应着某类物体的特定部位。

为了从观测点云中提取物体的语义原语,作者利用了一个点云分割网络,将观测点云分割成了带有标签的语义原语。

图片

生成式的形状估计

3D的生成模型(如DeepSDF)大多是在归一化的坐标系下运行的。

然而在真实世界观测中的物体与归一化坐标系之间会存在一个相似位姿变换(旋转、平移以及尺度)。

为了在位姿未知时来求解当前观测对应的归一化形状,作者基于语义原语表示,提出了一种对相似变换不变的形状描述子。

这种描述子如下图所示,它描述了不同原语构成的向量之间的夹角:

图片

作者通过这个描述子来衡量当前观测与估计形状之间的误差,并通过梯度下降来使得估计形状与观测之间更加一致,过程如下图所示。 

图片

作者另外展示了更多的形状优化示例。

图片

位姿估计

最后,通过观测点云与求解形状之间的语义原语对应关系,作者使用 Umeyama 算法求解了观测形状的位姿。

图片

实验结果

作者在 NOCS 提供的 REAL275(真实数据集) 和 CAMERA25(合成数据集) 数据集上进行了对比实验,与其他方法在位姿估计精度上进行了对比,所提出的方法在多项指标上远超其他方法。

同时,作者也对比了需要在 NOCS 提供的训练集上训练的参数量,作者需要最少的2.3M的参数量便达到了最先进水平。

图片

到这里,我们也就讲完了《仅需10%参数量即超越SOTA!浙大、字节、港中文联合提出「类别级位姿估计」任务新框架》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于参数,模型的知识点!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
百事正用AI种土豆,连削皮算法都搞上了百事正用AI种土豆,连削皮算法都搞上了
上一篇
百事正用AI种土豆,连削皮算法都搞上了
分析失败的AI项目能学到什么?
下一篇
分析失败的AI项目能学到什么?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    96次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    104次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    110次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    102次使用
  • Suno苏诺中文版:AI音乐创作平台,人人都是音乐家
    Suno苏诺中文版
    探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
    102次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码