仅需10%参数量即超越SOTA!浙大、字节、港中文联合提出「类别级位姿估计」任务新框架
欢迎各位小伙伴来到golang学习网,相聚于此都是缘哈哈哈!今天我给大家带来《仅需10%参数量即超越SOTA!浙大、字节、港中文联合提出「类别级位姿估计」任务新框架》,这篇文章主要讲到等等知识,如果你对科技周边相关的知识非常感兴趣或者正在自学,都可以关注我,我会持续更新相关文章!当然,有什么建议也欢迎在评论留言提出!一起学习!
赋予机器人对日常物体的 3D 理解是机器人应用中的一项重大挑战。
在未知环境中进行探索时,由于物体形状的多样性,现有的物体位姿估计方法仍然不能令人满意。
最近浙江大学、字节跳动人工智能实验室和香港中文大学的研究者联合提出了一个新的框架,用于从单个 RGB-D 图像进行类别级物体形状和位姿估计。
论文地址:https://arxiv.org/abs/2210.01112
项目链接:https://zju3dv.github.io/gCasp
为了处理类别内物体的形状变化,研究人员采用语义原始表示,将不同的形状编码到一个统一的隐空间中,这种表示是在观察到的点云和估计的形状之间建立可靠对应关系的关键。
然后通过设计的对刚体相似变换不变的形状描述子,解耦了物体的形状和位姿估计,从而支持任意位姿中目标物体的隐式形状优化。实验表明所提出的方法在公开数据集中实现了领先的位姿估计性能。
研究背景
在机器人的感知与操作领域,估计日常物体的形状和位姿是一项基本功能,并且具有多种应用,其中包括 3D 场景理解、机器人操作和自主仓储。
该任务的早期工作大多集中在实例级位姿估计上,这些工作主要通过将观察到的物体与给定的 CAD 模型对齐来获得物体位姿。
然而,这样的设置在现实世界的场景中是有限的,因为很难预先获得一个任意给定物体的确切模型。
为了推广到那些没见过但是在语义上熟悉的物体,类别级别物体位姿估计正在引起越来越多的研究关注,因为它可以潜在地处理真实场景中同一类别的各种实例。
现有的类别级位姿估计方法通常尝试预测一个类中实例的像素级归一化坐标,或者采用形变之后的参考先验模型来估计物体位姿。
尽管这些工作已经取得了很大的进步,但是当同一类别中存在较大的形状差异时,这些一次性预测方法仍然面临困难。
为了处理同一类内物体的多样性,一些工作利用神经隐式表示,通过迭代优化隐式空间中的位姿和形状来适应目标物体的形状,并获得了更好的性能。
在类别级物体位姿估计中有两个主要挑战,一是巨大的类内形状差异,二是现有的方法将形状和位姿的耦合在一起进行优化,这样容易导致优化问题更加复杂。
在这篇论文中,研究人员通过设计的对刚体相似变换不变的形状描述子,解耦了物体的形状和位姿估计,从而支持任意位姿中目标物体的隐式形状优化。最后再根据估计形状与观测之间的语义关联,求解出物体的尺度与位姿。
算法介绍
算法由三个模块组成,语义原语提取、生成式形状估计和物体位姿估计。
算法的输入是单张 RGB-D 图像,算法使用预先训练好的 Mask R-CNN 获得 RGB 图像的语义分割结果,然后根据相机内参反投影得到每个物体的点云。该方法主要对点云进行处理,最终求得每个物体的尺度与6DoF位姿。
语义原语提取
DualSDF[1] 中提出了一种针对同类物体的语义原语的表示方法。如下图左所示,在同一类物体中,每个实例都被分成了一定数量的语义原语,每个原语的标签对应着某类物体的特定部位。
为了从观测点云中提取物体的语义原语,作者利用了一个点云分割网络,将观测点云分割成了带有标签的语义原语。
生成式的形状估计
3D的生成模型(如DeepSDF)大多是在归一化的坐标系下运行的。
然而在真实世界观测中的物体与归一化坐标系之间会存在一个相似位姿变换(旋转、平移以及尺度)。
为了在位姿未知时来求解当前观测对应的归一化形状,作者基于语义原语表示,提出了一种对相似变换不变的形状描述子。
这种描述子如下图所示,它描述了不同原语构成的向量之间的夹角:
作者通过这个描述子来衡量当前观测与估计形状之间的误差,并通过梯度下降来使得估计形状与观测之间更加一致,过程如下图所示。
作者另外展示了更多的形状优化示例。
位姿估计
最后,通过观测点云与求解形状之间的语义原语对应关系,作者使用 Umeyama 算法求解了观测形状的位姿。
实验结果
作者在 NOCS 提供的 REAL275(真实数据集) 和 CAMERA25(合成数据集) 数据集上进行了对比实验,与其他方法在位姿估计精度上进行了对比,所提出的方法在多项指标上远超其他方法。
同时,作者也对比了需要在 NOCS 提供的训练集上训练的参数量,作者需要最少的2.3M的参数量便达到了最先进水平。
到这里,我们也就讲完了《仅需10%参数量即超越SOTA!浙大、字节、港中文联合提出「类别级位姿估计」任务新框架》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于参数,模型的知识点!

- 上一篇
- 百事正用AI种土豆,连削皮算法都搞上了

- 下一篇
- 分析失败的AI项目能学到什么?
-
- 谦让的板凳
- 很有用,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,帮助很大,总算是懂了,感谢楼主分享技术文章!
- 2023-04-27 13:56:36
-
- 慈祥的歌曲
- 很详细,mark,感谢作者的这篇文章,我会继续支持!
- 2023-04-18 07:13:42
-
- 聪明的书本
- 这篇文章内容出现的刚刚好,太全面了,赞 👍👍,码起来,关注楼主了!希望楼主能多写科技周边相关的文章。
- 2023-04-15 08:11:25
-
- 科技周边 · 人工智能 | 3小时前 |
- Linux服务器时间校对命令详解及应用
- 420浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 | 量子计算 营收 skywater 第一季度 ThermaView
- SkyWaterQ1营收6130万,强势新平台吸睛
- 293浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 问界新M7牧野青发布颜值爆表24.98万起
- 416浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 2024财年车企净利润榜:丰田居首,小米排15
- 426浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 | 开源 国产品牌 5G手机 电子信息制造业 软件及信息技术服务业
- 工信部数据:1-2月5G手机出货4161.9万,国产占85%
- 289浏览 收藏
-
- 科技周边 · 人工智能 | 10小时前 | 面板 lge
- LG东南亚工厂暂停,北美成新重心
- 487浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 23次使用
-
- AI Make Song
- AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
- 33次使用
-
- SongGenerator
- 探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
- 30次使用
-
- BeArt AI换脸
- 探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
- 33次使用
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 36次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览