当前位置:首页 > 文章列表 > 文章 > python教程 > Z3求解器破解冰冻湖路径难题

Z3求解器破解冰冻湖路径难题

2025-09-01 11:42:39 0浏览 收藏

小伙伴们对文章编程感兴趣吗?是否正在学习相关知识点?如果是,那么本文《Z3求解器破解冰冻湖路径问题》,就很适合你,本篇文章讲解的知识点主要包括。在之后的文章中也会多多分享相关知识点,希望对大家的知识积累有所帮助!

使用 Z3 求解器寻找冰冻湖上的路径

本文将详细介绍如何使用 Z3 定理证明器在 Python 中解决冰冻湖寻路问题。我们将详细讲解如何将问题转化为 Z3 可以理解的约束条件,并提供完整的代码示例,帮助读者理解如何使用 Z3 找到从起点到终点的安全路径。本文重点在于如何正确建模问题,以及如何使用 Z3 的 API 来表达约束和求解。

问题描述

给定一个由 1(安全)和 0(不安全)组成的矩阵,代表一个冰冻湖。目标是找到一条从起始位置到目标位置的安全路径,即路径上的所有单元格都必须是安全的(值为 1)。 只能在相邻的单元格之间移动(上、下、左、右)。

解决方案

解决此问题的关键在于正确地将问题建模为 Z3 可以理解的约束。我们不应该为矩阵中的每个单元格创建符号变量,而是应该为路径本身创建变量。这允许我们直接约束路径的有效性。

1. 定义路径变量

首先,我们需要定义表示路径的变量。 由于我们不知道路径的长度,我们可以假设最坏的情况是路径包含矩阵中的所有单元格。 因此,我们可以为路径中的每个可能的位置创建整数变量,表示其行和列坐标。

from z3 import *

def find_path(matrix, start, end):
    # Define the dimensions of the matrix
    rows = len(matrix)
    cols = len(matrix[0])

    # symbolic look-up into the matrix:
    def lookup(x, y):
        val = 0
        for r in range(rows):
            for c in range(cols):
                val = If(And(x == r, y == c), matrix[r][c], val)
        return val

    # Create a path, there are at most rows*cols elements
    path = []
    for r in range(rows):
        for c in range(cols):
            path.append([FreshInt(), FreshInt()])

在这里,path 是一个列表,其中每个元素都是包含两个 FreshInt() 变量的列表,分别代表行和列的索引。 FreshInt() 创建一个新的整数变量,其名称与之前创建的任何变量不同。 lookup 函数用于查找矩阵中给定坐标的值。

2. 添加约束

接下来,我们需要添加约束来确保路径有效。 这包括以下内容:

  • 路径的第一个元素必须是起始位置。
  • 路径中的每个后续元素必须与前一个元素相邻。
  • 路径中的每个元素必须是安全的(值为 1)。
  • 路径必须最终到达目标位置。
  • 路径中的所有位置都是唯一的。
    s = Solver()

    # assert that the very first element of the path is the start position:
    s.add(path[0][0] == start[0])
    s.add(path[0][1] == start[1])

    # for each remaining path-element, make sure either we reached the end, or it's a valid move
    prev = path[0]
    done = False
    for p in path[1:]:
        valid1 = And(p[0] >= 0, p[0] < rows, p[1] >= 0, p[1] < cols)  # Valid coords

        valid2 = Or( And(p[0] == prev[0]-1, p[1] == prev[1])     #    Go up
                   , And(p[0] == prev[0]+1, p[1] == prev[1])     # or Go down
                   , And(p[0] == prev[0],   p[1] == prev[1]+1)   # or Go right
                   , And(p[0] == prev[0],   p[1] == prev[1]-1))  # or Go left

        valid3 = lookup(p[0], p[1]) == 1 # The cell is safe

        # Either we're done, or all valid conditions must hold
        s.add(Or(done, And(valid1, valid2, valid3)))

        prev = p

        # We're done if p is the end position:
        done = Or(done, And(p[0] == end[0], p[1] == end[1]))

    # Make sure the path is unique:
    for i in range(len(path)):
        for j in range(len(path)):
            if j <= i:
                continue
            s.add(Or(path[i][0] != path[j][0], path[i][1] != path[j][1]))

代码解释:

  • s = Solver() 创建一个 Z3 求解器实例。
  • s.add(path[0][0] == start[0]) 和 s.add(path[0][1] == start[1]) 约束路径的第一个元素为起始位置。
  • 循环遍历路径中的其余元素,并添加约束以确保每个元素都与前一个元素相邻,并且是安全的。
    • valid1 确保坐标有效。
    • valid2 确保移动是有效的(上、下、左、右)。
    • valid3 确保单元格是安全的。
    • s.add(Or(done, And(valid1, valid2, valid3))) 添加约束,要求要么已经到达终点,要么所有有效条件都成立。
    • done = Or(done, And(p[0] == end[0], p[1] == end[1])) 检查当前位置是否是终点。
  • 最后的嵌套循环添加约束,确保路径中的所有位置都是唯一的。

3. 求解并提取路径

最后,我们使用 Z3 求解器来查找满足所有约束的路径。 如果找到这样的路径,我们将从模型中提取它。

    # Compute the path:
    if s.check() == sat:
        model = s.model()
        walk = []
        for p in path:
            cur = [model[p[0]].as_long(), model[p[1]].as_long()]
            walk.append(cur)
            if (cur[0] == end[0] and cur[1] == end[1]):
                break
        return walk
    else:
        return None

代码解释:

  • s.check() == sat 检查求解器是否找到满足所有约束的解。
  • model = s.model() 获取模型,该模型包含变量的赋值。
  • 循环遍历路径,并从模型中提取每个位置的坐标。
  • 如果当前位置是终点,则停止提取路径。
  • 返回提取的路径。

4. 完整代码和示例用法

from z3 import *

def find_path(matrix, start, end):

    # Define the dimensions of the matrix
    rows = len(matrix)
    cols = len(matrix[0])

    # symbolic look-up into the matrix:
    def lookup(x, y):
        val = 0
        for r in range(rows):
            for c in range(cols):
                val = If(And(x == r, y == c), matrix[r][c], val)
        return val

    # Create a path, there are at most rows*cols elements
    path = []
    for r in range(rows):
        for c in range(cols):
            path.append([FreshInt(), FreshInt()])

    s = Solver()

    # assert that the very first element of the path is the start position:
    s.add(path[0][0] == start[0])
    s.add(path[0][1] == start[1])

    # for each remaining path-element, make sure either we reached the end, or it's a valid move
    prev = path[0]
    done = False
    for p in path[1:]:
        valid1 = And(p[0] >= 0, p[0] < rows, p[1] >= 0, p[1] < cols)  # Valid coords

        valid2 = Or( And(p[0] == prev[0]-1, p[1] == prev[1])     #    Go up
                   , And(p[0] == prev[0]+1, p[1] == prev[1])     # or Go down
                   , And(p[0] == prev[0],   p[1] == prev[1]+1)   # or Go right
                   , And(p[0] == prev[0],   p[1] == prev[1]-1))  # or Go left

        valid3 = lookup(p[0], p[1]) == 1 # The cell is safe

        # Either we're done, or all valid conditions must hold
        s.add(Or(done, And(valid1, valid2, valid3)))

        prev = p

        # We're done if p is the end position:
        done = Or(done, And(p[0] == end[0], p[1] == end[1]))

    # Make sure the path is unique:
    for i in range(len(path)):
        for j in range(len(path)):
            if j <= i:
                continue
            s.add(Or(path[i][0] != path[j][0], path[i][1] != path[j][1]))

    # Compute the path:
    if s.check() == sat:
        model = s.model()
        walk = []
        for p in path:
            cur = [model[p[0]].as_long(), model[p[1]].as_long()]
            walk.append(cur)
            if (cur[0] == end[0] and cur[1] == end[1]):
                break
        return walk
    else:
        return None

# Example usage
matrix = [[1, 1, 1, 0],
          [1, 0, 1, 0],
          [1, 0, 1, 0],
          [1, 0, 0, 0]]
start = (3, 0)
end = (2, 2)

path = find_path(matrix, start, end)
if path:
    print("Valid path found:")
    for cell in path:
        print(f"({chr(ord('A') + cell[0])}{cell[1] + 1})")
else:
    print("No valid path found.")

注意事项和总结

  • 建模是关键: 使用 Z3 解决问题的关键在于正确地将问题建模为约束。 在这个问题中,为路径创建变量而不是为矩阵中的每个单元格创建变量,可以更有效地表达约束。
  • 性能: Z3 的性能取决于问题的复杂性。 对于较大的矩阵,可能需要调整约束或使用更高级的技术来提高性能。
  • 唯一性约束: 确保路径中的所有位置都是唯一的,这对于避免循环至关重要。

通过使用 Z3 定理证明器,我们可以有效地找到冰冻湖上的安全路径。 这种方法可以推广到其他寻路问题,只需根据特定问题的要求调整约束即可。

好了,本文到此结束,带大家了解了《Z3求解器破解冰冻湖路径难题》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!

京东白条借款额度怎么查京东白条借款额度怎么查
上一篇
京东白条借款额度怎么查
美图秀秀LOMO效果制作方法
下一篇
美图秀秀LOMO效果制作方法
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3180次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3391次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3420次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4526次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3800次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码