DEAP如何获取每代最优个体详解
## DEAP获取每代最优个体方法解析:高效遗传算法实践 在使用DEAP库进行遗传算法编程时,如何高效获取每一代种群中的最佳个体?本文深入解析DEAP库中`HallOfFame`类与`MultiStatistics`类的巧妙结合,提供一种简洁明了的方法,用于追踪并记录每一代的最优解,避免复杂过滤操作,显著提高代码效率。通过本文示例代码,开发者可轻松掌握在遗传算法开发中,如何利用`HallOfFame`自动记录种群中适应度最高的个体,并将其添加到`MultiStatistics`中,实现对算法收敛情况的精准分析与可视化展示。

本文旨在介绍如何在使用 DEAP (Distributed Evolutionary Algorithms in Python) 库进行遗传算法编程时,高效地获取每一代种群中的最佳个体。通过结合 HallOfFame 类和 MultiStatistics 类,我们可以轻松地追踪并记录每一代的最优解,从而进行后续的分析或可视化。本文提供了一种简洁明了的方法,避免了复杂的过滤操作,提高了代码效率。
在使用 DEAP 进行遗传算法开发时,经常需要追踪每一代种群中的最佳个体,以便分析算法的收敛情况或者进行可视化展示。一种常见的方法是使用 tools.Statistics 和 tools.MultiStatistics 类来记录种群的统计信息。然而,如果直接在 Statistics 类中注册一个复杂的函数来查找最佳个体,可能会导致性能问题,尤其是在种群规模较大时。
更高效的方法是利用 DEAP 提供的 HallOfFame 类。HallOfFame 类可以自动记录种群中适应度最高的若干个个体。我们可以在每一代结束后,从 HallOfFame 中获取最佳个体,并将其添加到 MultiStatistics 中。
以下是一个示例代码:
import numpy as np
from deap import base, creator, tools, algorithms
# 假设已经定义了适应度函数 tspDistance 和常量 consts
# 例如:
# def tspDistance(individual):
# # 计算个体的适应度
# return np.sum(individual)
# consts.HALL_OF_FAME_SIZE = 1
# consts.P_CROSSOVER = 0.9
# consts.P_MUTATION = 0.1
# consts.MAX_GENERATIONS = 10
# 创建个体和种群
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
# 假设已经定义了 toolbox.register("attribute", ...) 和 toolbox.register("individual", ...)
# 以及 toolbox.register("population", ...)
# 例如:
# toolbox.register("attribute", np.random.rand)
# toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attribute, n=10)
# toolbox.register("population", tools.initRepeat, list, toolbox.individual)
# toolbox.register("mate", tools.cxTwoPoint)
# toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.1)
# toolbox.register("select", tools.selTournament, tournsize=3)
# toolbox.register("evaluate", tspDistance)
# 初始化 HallOfFame
hof = tools.HallOfFame(consts.HALL_OF_FAME_SIZE)
# 配置统计信息
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register('min', np.min)
stats.register('mean', np.mean)
# 定义一个函数,从 HallOfFame 中获取最佳个体
def get_best_from_hof(hof):
return hof[0] if hof else None # 确保 hof 不为空
# 注册历史记录,使用 HallOfFame 中的最佳个体
history = tools.Statistics(lambda ind: ind)
history.register('hof', get_best_from_hof, hof=hof) # 传递 hof 对象
# 创建 MultiStatistics 对象
mstats = tools.MultiStatistics(fitness=stats, history=history)
# 初始化种群
population = toolbox.population(n=100)
# 运行遗传算法
population, logbook = algorithms.eaSimple(population, toolbox,
cxpb=consts.P_CROSSOVER, mutpb=consts.P_MUTATION,
ngen=consts.MAX_GENERATIONS, stats=mstats,
halloffame=hof, verbose=True)
# 现在可以通过 logbook 访问每一代的最佳个体
# 例如:
# print(logbook.chapters['history'].select('hof'))代码解释:
- HallOfFame: tools.HallOfFame(consts.HALL_OF_FAME_SIZE) 用于存储最优的个体。 consts.HALL_OF_FAME_SIZE 定义了存储的个体数量。 通常设置为1,只保留最佳个体。
- history.register('hof', get_best_from_hof, hof=hof): 关键在于这一行。 我们定义了一个 get_best_from_hof 函数,它接受 hof 对象作为参数,并返回 hof 中的第一个个体(即最佳个体)。 我们将这个函数注册到 history 统计信息中,并将 hof 对象传递给它。 这样,每一代都会从 HallOfFame 中获取最佳个体并记录下来。
- algorithms.eaSimple: 在 eaSimple 函数中,halloffame=hof 确保每一代更新 HallOfFame,stats=mstats 确保每一代记录统计信息,包括从 HallOfFame 中获取的最佳个体。
注意事项:
- 确保 consts.HALL_OF_FAME_SIZE 设置为适当的值。如果只需要记录每一代的最佳个体,设置为 1 即可。
- tspDistance 函数需要正确计算个体的适应度值。
- 如果 HallOfFame 为空,hof[0] 会抛出异常。所以在 get_best_from_hof 函数中添加了 if hof else None 的判断。
总结:
通过结合 HallOfFame 和 MultiStatistics,可以更高效地获取每一代种群中的最佳个体。这种方法避免了在统计信息中进行复杂的过滤操作,提高了代码的执行效率。同时,它也使得代码更加简洁易懂,方便后续的分析和可视化。
文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《DEAP如何获取每代最优个体详解》文章吧,也可关注golang学习网公众号了解相关技术文章。
CSS容器内容左对齐技巧详解
- 上一篇
- CSS容器内容左对齐技巧详解
- 下一篇
- 高考期间微信系统恢复时间最新通知
-
- 文章 · python教程 | 15分钟前 |
- FlaskMySQL查询无结果怎么解决
- 226浏览 收藏
-
- 文章 · python教程 | 21分钟前 |
- SeleniumPython点击新窗口冻结问题解决办法
- 293浏览 收藏
-
- 文章 · python教程 | 32分钟前 |
- Python函数返回值获取技巧
- 187浏览 收藏
-
- 文章 · python教程 | 57分钟前 |
- Keras二分类器调试与优化方法
- 500浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python数据离散化:cut与qcut对比解析
- 459浏览 收藏
-
- 文章 · python教程 | 2小时前 | 数据验证 自定义函数 异常处理 条件验证 Pythoncheck函数
- Pythoncheck函数使用方法详解
- 374浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- Python语言入门与基础解析
- 296浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- PyMongo导入CSV:类型转换技巧详解
- 351浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- Python列表优势与实用技巧
- 157浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- Pandas修改首行数据技巧分享
- 485浏览 收藏
-
- 文章 · python教程 | 13小时前 |
- Python列表创建技巧全解析
- 283浏览 收藏
-
- 文章 · python教程 | 14小时前 |
- Python计算文件实际占用空间技巧
- 349浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3182次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3393次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3425次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4530次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3802次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

