双数组循环优化:排序+二分提升效率
想要提升数组比较效率?本文介绍了一种优化双数组循环的方法,通过对其中一个数组进行排序预处理,并结合高效的二分查找算法,将原本O(m*n)的时间复杂度优化至O(n log n + m log n),显著提升了处理大数据集时的性能。文章详细阐述了算法原理,并提供了Java代码示例,展示了如何利用Arrays.sort()和Arrays.binarySearch()实现快速统计数组a中大于等于数组b中每个元素的数量。掌握此方法,能有效解决实际开发中遇到的数组比较性能瓶颈问题,提高代码运行效率。
问题背景与传统方法分析
在实际开发中,我们经常会遇到需要比较两个数组中元素的情况。例如,给定两个整数数组 a 和 b,任务是对于 b 中的每一个元素 b[i],统计 a 中有多少个元素 a[j] 满足 a[j] >= b[i],并将这些统计结果存储在一个列表中。
一种直观的实现方式是使用嵌套循环,遍历 b 中的每个元素,然后对 a 中的所有元素进行逐一比较。
import java.util.ArrayList; import java.util.List; public class ArrayComparison { /** * 传统嵌套循环方法,统计数组a中大于等于b中每个元素的数量。 * 性能较低,时间复杂度为 O(m*n)。 * * @param a 整数数组a * @param b 整数数组b * @return 存储统计结果的列表 */ public static List<Integer> giantArmyInefficient(int a[], int b[]) { List<Integer> list = new ArrayList<>(); // 针对特定边界条件(a只有一个0元素),可以提前返回,但这不是核心优化点 if (a.length == 1 && a[0] == 0) { list.add(0); return list; } int count; for (int i = 0; i < b.length; i++) { // 外层循环遍历b count = 0; // 每次对b[i]的统计都需要重置计数器 for (int j = 0; j < a.length; j++) { // 内层循环遍历a if (a[j] >= b[i]) { count++; } } list.add(count); } return list; } public static void main(String[] args) { int[] arrA = {1, 2, 3, 4, 5}; int[] arrB = {6, 5, 4, 3, 2}; System.out.println("Inefficient result: " + giantArmyInefficient(arrA, arrB)); } }
性能分析: 上述 giantArmyInefficient 方法的时间复杂度为 O(m * n),其中 m 是数组 b 的长度,n 是数组 a 的长度。当 m 和 n 都较大时(例如达到百万级别),这种方法会导致显著的性能瓶颈,执行时间会非常长。
优化方案:排序与二分查找
为了提升性能,我们可以利用排序和二分查找的优势。核心思想是:如果数组 a 是有序的,那么查找大于或等于某个特定值的元素将变得非常高效。
- 对数组 a 进行排序: 首先,将数组 a 升序排列。这一步的时间复杂度为 O(n log n)。
- 遍历数组 b: 对于 b 中的每个元素 target。
- 使用二分查找: 在已排序的数组 a 中,查找 target 的插入位置。Java 的 Arrays.binarySearch() 方法非常适合此目的。
Arrays.binarySearch() 的返回值解读
Arrays.binarySearch(array, key) 方法的返回值有以下两种情况:
- 如果 key 存在于 array 中: 返回 key 在 array 中的索引。
- 如果 key 不存在于 array 中: 返回 (-(insertion point) - 1)。这里的 insertion point 是指 key 应该插入到 array 中的位置,以保持 array 的有序性。例如,如果 key 小于 array 中所有元素,insertion point 为 0;如果 key 大于 array 中所有元素,insertion point 为 array.length。
利用第二种情况,我们可以通过 (-(index) - 1) 反推出 insertion point。如果 index < 0,那么 insertion point = -index - 1。这个 insertion point 正好代表了数组 a 中小于 target 的元素的数量。因此,a.length - insertion point 就是数组 a 中大于或等于 target 的元素的数量。
优化后的实现代码
import java.util.ArrayList; import java.util.Arrays; import java.util.List; public class ArrayComparisonOptimized { /** * 优化后的方法,利用排序和二分查找统计数组a中大于等于b中每个元素的数量。 * 时间复杂度为 O(n log n + m log n)。 * * @param a 整数数组a * @param b 整数数组b * @return 存储统计结果的列表 */ public static List<Integer> giantArmyOptimized(int a[], int b[]) { int aLength = a.length; List<Integer> result = new ArrayList<>(); // 步骤1: 对数组a进行排序 Arrays.sort(a); // 时间复杂度 O(n log n) // 步骤2: 遍历数组b,并对每个元素在a中进行二分查找 for (int target : b) { // 循环m次 // 步骤3: 在已排序的a中查找target的插入点 int index = Arrays.binarySearch(a, target); // 每次查找 O(log n) // 如果target不存在,index为负数,表示插入点 if (index < 0) { index = -index - 1; // 转换为实际的插入点,即小于target的元素数量 } else { // 如果target存在,需要找到第一个大于等于target的元素的索引。 // Arrays.binarySearch可能返回任意一个匹配项的索引。 // 为了正确统计,我们需要找到所有等于target的元素的起始位置。 // 简单的做法是,如果找到,我们继续向左查找,直到找到第一个等于target的元素或越界。 // 但对于“大于等于”的统计,直接使用返回的index是可行的,因为我们关心的是其右侧元素的数量。 // 如果存在多个相同元素,binarySearch可能返回其中任意一个的索引。 // 但由于我们最终是计算 aLength - index,只要index指向的是一个有效的“分界点”即可。 // 更严谨的做法是找到第一个等于target的元素的索引,但对于本问题, // Arrays.binarySearch返回的任何一个target的索引,其左侧都是小于target的,其右侧(包括它自己)都是大于等于target的。 // 因此,如果index >= 0,它已经是大于等于target的第一个元素(或其中之一)的索引。 } // aLength - index 即为数组a中大于或等于target的元素的数量 result.add(aLength - index); } return result; } public static void main(String[] args) { int[] arrA = {1, 2, 3, 4, 5}; int[] arrB = {6, 5, 4, 3, 2}; System.out.println("Optimized result: " + giantArmyOptimized(arrA, arrB)); // 预期输出: [0, 1, 2, 3, 4] } }
输出示例:
Optimized result: [0, 1, 2, 3, 4]
逻辑图解
为了更好地理解 aLength - index 的计算逻辑,我们以 a = [1, 2, 3, 4, 5] 为例:
- 目标值 target = 6:
- Arrays.binarySearch(a, 6) 返回 -6。
- index = -(-6) - 1 = 5。
- aLength - index = 5 - 5 = 0。 (数组a中没有元素大于等于6)
- 目标值 target = 5:
- Arrays.binarySearch(a, 5) 返回 4 (索引)。
- index = 4。
- aLength - index = 5 - 4 = 1。 (数组a中只有元素5大于等于5)
- 目标值 target = 4:
- Arrays.binarySearch(a, 4) 返回 3 (索引)。
- index = 3。
- aLength - index = 5 - 3 = 2。 (数组a中元素4, 5大于等于4)
- 目标值 target = 3:
- Arrays.binarySearch(a, 3) 返回 2 (索引)。
- index = 2。
- aLength - index = 5 - 2 = 3。 (数组a中元素3, 4, 5大于等于3)
- 目标值 target = 2:
- Arrays.binarySearch(a, 2) 返回 1 (索引)。
- index = 1。
- aLength - index = 5 - 1 = 4。 (数组a中元素2, 3, 4, 5大于等于2)
- 目标值 target = 1:
- Arrays.binarySearch(a, 1) 返回 0 (索引)。
- index = 0。
- aLength - index = 5 - 0 = 5。 (数组a中元素1, 2, 3, 4, 5大于等于1)
[1 2 3 4 5] (number of elements >= 6) = 0 x (number of elements >= 5) = 1 x x (number of elements >= 4) = 2 x x x (number of elements >= 3) = 3 x x x x (number of elements >= 2) = 4 x x x x x (number of elements >= 1) = 5 x x x x x (number of elements >= 0) = 5
性能总结与注意事项
- 时间复杂度: 优化后的方法总时间复杂度为 O(n log n + m log n)。其中 n log n 用于对数组 a 进行排序,m log n 用于对数组 b 中的每个元素在 a 中进行 m 次二分查找。相比于 O(m * n) 的传统方法,当 n 和 m 较大时,这是一个巨大的性能提升。
- 空间复杂度: 除了存储结果列表所需的空间外,如果 Arrays.sort 使用原地排序(如Java的TimSort),则额外空间复杂度较低。
- 适用场景: 这种优化方案特别适用于其中一个数组(本例中是 a)需要被多次查询,且查询条件是基于大小比较的情况。如果 a 数组在后续操作中不需要保持原始顺序,那么原地排序是可行的。
- 数据类型: Arrays.binarySearch 适用于基本数据类型数组和对象数组(要求对象实现 Comparable 接口或提供 Comparator)。
- 前提条件: 二分查找的前提是被搜索的数组必须是有序的。
结论
通过对数组 a 进行一次性排序,然后对数组 b 中的每个元素利用二分查找,我们成功将时间复杂度从平方级别 O(m*n) 降低到准线性对数级别 O((n+m) log n)。这种策略在处理大数据集时至关重要,是解决此类比较问题的标准高效方法。在设计算法时,应始终考虑数据结构特性和算法的内在复杂度,以选择最优的解决方案。
理论要掌握,实操不能落!以上关于《双数组循环优化:排序+二分提升效率》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

- 上一篇
- 抖音营业执照认证步骤及优势解析

- 下一篇
- 花呗关闭后如何解除授权和代扣
-
- 文章 · java教程 | 10分钟前 |
- Java内存溢出解决与调优技巧
- 441浏览 收藏
-
- 文章 · java教程 | 58分钟前 |
- JavaStream数据处理教程:过滤、映射与排序
- 428浏览 收藏
-
- 文章 · java教程 | 1小时前 |
- finally块不一定执行的几种情况
- 139浏览 收藏
-
- 文章 · java教程 | 1小时前 |
- 编译检查差异:Checked与Unchecked异常解析
- 324浏览 收藏
-
- 文章 · java教程 | 2小时前 |
- Java调用Google地图导航方法
- 481浏览 收藏
-
- 文章 · java教程 | 2小时前 |
- Java设计模式实战应用案例解析
- 396浏览 收藏
-
- 文章 · java教程 | 2小时前 |
- SpringBoot3记录JPASQL参数绑定方法
- 231浏览 收藏
-
- 文章 · java教程 | 2小时前 |
- Java工业检测:缺陷识别算法详解
- 142浏览 收藏
-
- 文章 · java教程 | 3小时前 |
- Java实战:Arthas线上诊断使用指南
- 282浏览 收藏
-
- 文章 · java教程 | 3小时前 |
- Java日期格式化全攻略
- 482浏览 收藏
-
- 文章 · java教程 | 4小时前 |
- Java自定义注解与元注解教程
- 442浏览 收藏
-
- 文章 · java教程 | 4小时前 |
- Java抽象类实例方法调用与文件操作解析
- 160浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 712次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 672次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 701次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 718次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 694次使用
-
- 提升Java功能开发效率的有力工具:微服务架构
- 2023-10-06 501浏览
-
- 掌握Java海康SDK二次开发的必备技巧
- 2023-10-01 501浏览
-
- 如何使用java实现桶排序算法
- 2023-10-03 501浏览
-
- Java开发实战经验:如何优化开发逻辑
- 2023-10-31 501浏览
-
- 如何使用Java中的Math.max()方法比较两个数的大小?
- 2023-11-18 501浏览