当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 开源!港中文、MIT、复旦提出首个RNA基石模型

开源!港中文、MIT、复旦提出首个RNA基石模型

来源:51CTO.COM 2023-04-30 08:43:24 0浏览 收藏

怎么入门科技周边编程?需要学习哪些知识点?这是新手们刚接触编程时常见的问题;下面golang学习网就来给大家整理分享一些知识点,希望能够给初学者一些帮助。本篇文章就来介绍《开源!港中文、MIT、复旦提出首个RNA基石模型》,涉及到,有需要的可以收藏一下

不同于蛋白质领域,RNA 领域的研究往往缺少充足的标注数据,比如 3D 数据只有 1000 多个 RNA。这极大限制了机器学习方法在 RNA 结构功能预测任务中的开发。

为了弥补标注数据的不足,本文展示了一项可为 RNA 各类研究提供丰富结构功能知识的基石模型 ——RNA foundation model (RNA-FM)。作为全球首个基于 23 million 的无标签 RNA 序列通过无监督方式训练得到的 RNA 基石模型,RNA-FM 挖掘出了 RNA 序列中蕴含的进化和结构模式。

值得注意的是,RNA-FM 仅需要配比简单的下游模型,或是仅提供 embedding,就能够在很多下游任务中获得远超 SOTA 的表现,比如在二级结构预测中可以提升 20%,距离图预测可以提升 30%。大规模的实验证明,该模型具有极强的泛化性,甚至可以用于 COVID-19 以及 mRNA 的调控片段。 

图片

  • 论文预印本:https://arxiv.org/abs/2204.00300
  • 代码和模型:https://github.com/ml4bio/RNA-FM
  • Server: https://proj.cse.cuhk.edu.hk/rnafm

引言

近年来,基于深度学习的生物计算方法在蛋白质领域取得了突破性的进展,其中最著名的里程碑当属谷歌 DeepMind 团队研发的端到端蛋白质 3D 结构预测框架 AlphaFold2。然而蛋白质只是诸多生物分子的一种,基因(DNA/RNA)作为蛋白质的产生源头,其相比于后者蕴含了更多的基础信息,有着更重要的研究价值。

一般而言,蛋白质是由用于编码(coding)的 RNA,也就是 mRNA,翻译得到的产物,一段固定的 mRNA 可以翻译为一段固定的蛋白质序列。而实际上这部分用于编码的 RNA 只占所有 RNA 序列的 2%,剩下的 98% 是非编码 RNA(non-coding RNA,ncRNA)。虽然 ncRNA 并不直接 “翻译” 成蛋白质,但是他们会折叠成具有特定功能的三级结构,在 mRNA 的翻译过程中或是其他生物机能中起到调控的作用。因此,分析 ncRNA 的结构以及功能是比蛋白质分析更为基础,也更为复杂的研究。

不过相比于计算方法较为成熟的蛋白质领域,目前基于 RNA 的结构和功能预测还处于初期,而原本适用于蛋白领域的计算方法也很难直接迁移到 RNA 领域。限制这些计算方法的主要是 RNA 数据的标注通常获取很难,需要耗费很多的实验资源和时间才能完成少量数据的标注,而计算方法大多又需要大量的标注数据进行监督才能发挥高性能。虽然有标注的数据不多,但 RNA 领域其实也积累了很多的无标注序列数据。本文的方法便是利用这些无标签的数据为各种下游任务提供额外的有效信息。

基于这种考虑,港中文、MIT、复旦及上海人工智能实验室团队提出了一个以无监督方式在 23million 的无标签纯 RNA 序列上训练的基石模型RNA foundation model (RNA-FM)。虽然数据在训练过程中没有提供标注信息,但是 RNA-FM 仍以无监督的方式挖掘出了这些 RNA 序列蕴含着的进化和结构模式。

如果能够有效地将 RNA-FM 应用于下游的 RNA 结构和功能预测任务中,这些计算方法必将受益于 RNA-FM 归纳得到的知识,进而实现性能表现上的提升。RNA-FM 的上游预训练以及下游的迁移和应用框架如下图所示。

图片

 研究概览

为了确认预训练的 RNA-FM 是否从大量的无标签数据中学到了 “知识” 以及学到了怎样的 “知识”,文章对 embedding 进行了一系列的分析

首先是直接通过 UMAP 对各种特征进行简单聚类比较,发现来自预训练 RNA-FM 的 embedding 比其他 embedding 形成了具有更加明显的 RNA 种类聚落。这意味着 RNA-FM 的 embedding 确实包含了用于区分 RNA 种类的结构或功能信息。

接着,文章还利用轨迹推断(Trajectory inference)通过 RNA-FM embedding 去预测来自不同物种的 lncRNA 的演化。从下图 streamplot 上看,预测的物种之间演化的伪时间大致与真实的物种演化信息一致,说明 RNA-FM embedding 还包含一部分进化信息。

值得注意的是,无论是 RNA 种类的群落信息还是 lncRNA 的演化信息,RNA-FM 在训练中都没有直接接触过这些的标签。RNA-FM 完全是以自监督的方式仅从纯序列中发掘出了与结构、功能以及演化相关的模式。 

图片


更多实验结果

除了直接对 RNA-FM 的 embedding 进行分析,文章还尝试将 RNA-FM 引入到各种各样的下游 RNA 结构预测任务,包括二级结构、接触预测,距离预测,以及三级结构预测,且都取得了明显的提升

尤其是在二级结构预测上,文章以 RNA-FM 作为主干,仅以一个简单的 ResNet 网络作为下游模型,就在两个公开数据集上超过了其他 12 种 state-of-the-art 方法,在 F1score 上优于其中最好的 UFold 达 3-5 百分点,在与 UFold 的 head-to-head 比较中,RNA-FM 在绝大部分的 RNA 类别上都超过 UFold。如果将 RNA-FM 和 E2Efold 结合,还可以进一步带来 5% 的表现提升。

图片

  为了验证模型的实际应用价值,文章利用 RNA-FM 对 COVID-19 数据进行完善的分析,包括利用 RNA-FM 精准预测 COVID-19 参照基因组(29870 nt)中关键调控元件,以及利用 RNA-FM embedding 粗略预测 COVID-19 主要变种的演化趋势。 图片

一般而言,分子的结构决定功能,RNA-FM 既然可以出色地完成 RNA 结构预测任务,那么是否能够利用 RNA-FM 也提升功能预测的结果呢?

因此,文章进一步尝试将 RNA-FM 引入下游的 RNA 功能预测任务中,比如利用 RNA-FM 的 embedding 进行 RNA - 蛋白质作用的预测。

实验证明,RNA-FM embedding 的引入提升了模型的性能,且在一些例子中竟然达到了匹配真实二级结构信息作为输入的预测结果。 

图片

为了探究基于 ncRNA 训练的 RNA-FM 是否可以泛化到其他 RNA 上,文章最后尝试利用 RNA-FM 基于 mRNA 上的 5’UTR 进行蛋白表达的功能预测。虽然 mRNA 不属于 ncRNA,但是其上的 5‘UTR 是不翻译但具有调控功能的区域,符合 ncRNA 的特点,且未出现在训练数据中。

从下图可以看到,包含 RNA-FM embedding 的模型总是优于不包含的模型。尽管性能上的提升比较有限,但也部分说明 RNA-FM 在非 ncRNA 的数据上也具有一定的泛化性。

图片

 结论

总的来说,该文章以无标签的 RNA 序列数据预训练语言模型 RNA-FM,并通过直接或间接的方式,在结构或功能等一系列不同的任务上进行全面的验证,证明了 RNA-FM 确实可以有效地提升计算方法在下游任务中的表现。

RNA-FM 的出现一定程度上缓解了 RNA 带标注数据紧张的现状,为其他研究者提供了便捷的访问大批量的无标签数据的接口,其将以 RNA 领域基础模型的身份,为该领域的各种各样的研究提供强有力的支援与帮助。

作者简介

本文有两个共同第一作者。陈佳阳,香港中文大学研究助理。胡智航,香港中文大学在读博士生。

本文有两位通讯作者。孙思琦,复旦大学智能复杂体系实验室和上海人工智能实验室青年研究员,主页 https://intersun.github.io

李煜,香港中文大学助理教授,MIT James Collins Lab 访问助理教授,Broad Institute of MIT and Harvard 研究科学家,哈佛大学 Wyss Institute 访问学者,Forbes 30 Under 30 Asia list–Class of 2022, Healthcare & Science。主页:https://liyu95.com。

今天关于《开源!港中文、MIT、复旦提出首个RNA基石模型》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于开源,模型的内容请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
上线仅两天,AI大模型写论文网站光速下架:不负责任的胡编乱造上线仅两天,AI大模型写论文网站光速下架:不负责任的胡编乱造
上一篇
上线仅两天,AI大模型写论文网站光速下架:不负责任的胡编乱造
合成数据生成器可以解决人工智能的偏见问题
下一篇
合成数据生成器可以解决人工智能的偏见问题
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    6次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    6次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    41次使用
  • MeowTalk喵说:AI猫咪语言翻译,增进人猫情感交流
    MeowTalk喵说
    MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
    36次使用
  • SEO标题Traini:全球首创宠物AI技术,提升宠物健康与行为解读
    Traini
    SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
    35次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码