无需下游训练,Tip-Adapter大幅提升CLIP图像分类准确率
在科技周边实战开发的过程中,我们经常会遇到一些这样那样的问题,然后要卡好半天,等问题解决了才发现原来一些细节知识点还是没有掌握好。今天golang学习网就整理分享《无需下游训练,Tip-Adapter大幅提升CLIP图像分类准确率》,聊聊,希望可以帮助到正在努力赚钱的你。

- 论文链接:https://arxiv.org/pdf/2207.09519.pdf
- 代码链接:https://github.com/gaopengcuhk/Tip-Adapter
一.研究背景
对比性图像语言预训练模型(CLIP)在近期展现出了强大的视觉领域迁移能力,可以在一个全新的下游数据集上进行 zero-shot 图像识别。为了进一步提升 CLIP 的迁移性能,现有方法使用了 few-shot 的设置,例如 CoOp 和 CLIP-Adapter,即提供了少量下游数据集的训练数据,使得 CLIP 能够更好的针对不同的视觉场景做出调整。但是,这种额外的训练步骤会带来不小的时间和空间资源开销,一定程度上影响了 CLIP 固有的快速知识迁移能力。因此,我们提出了 Tip-Adapter,一种不需要额外下游训练并且能很大程度提升 CLIP 准确率的 few-shot 图像分类方法。基于此,我们又提出了一种仅需要少量微调就能达到 state-of-the-art 性能的方案:Tip-Adapter-F,实现了效率和性能的最佳折中。如下表 1 所示,Tip-Adapter 不需要任何训练时间,即可以将 CLIP 在 ImageNet 数据集提升 + 1.7% 准确率(Accuracy),而 Tip-Adapter-F 仅需要之前方案十分之一的训练时间(Epochs,Time),就可以实现现有最佳的分类性能。

表 1:不同方案在 ImageNet 数据集上 16-shot 的图像分类准确率和训练时间的比较
二.研究方法
1.Tip-Adapter
Tip-Adapter 的整体网络结构如下图 1 所示,对于给定的 few-shot 训练数据集和标签,我们借助 CLIP 通过一个非训练的方案来构建一个缓存模型(Cache Model),它存储了来自下游训练数据的分类知识;在测试时,Tip-Adapter 通过将 Cache Model 的预测和原始 CLIP 的预测进行线性加和,来得到更强的最终分类结果。
详细的来说,我们使用 CLIP 预训练好的视觉编码器(Visual Encoder)来提取 few-shot 训练集所有图片的特征,作为 Cache Model 的 Keys;并且将对应的图片标签转化为 one-hot 编码的形式,作为 Cache Model 的 Values。这种 Key-Value Cache Model 的构建方法由于使用的是已经预训练好的 Visual Encoder,所以不需要任何训练开销;并且考虑到 few-shot 训练集中,每一个类别只含有少量的图片(1~16 shots),Cache Model 也几乎不会占用额外的显存开销,参考表一中的 GPU Mem. 指标。
对于一张测试图片,我们首先会利用 CLIP 的 Visual Encoder 来得到它的特征,再将该特征视为 Query 去 Cache Model 中进行下游 few-shot 数据的知识检索。由于 Keys 也是由 CLIP 的 Visual Encoder 提取得倒,因此和测试图片特征 Query 同源,我们可以直接计算它们之间的余弦相似度得倒一个 Key-Query 的邻接矩阵,此矩阵可以看作是每一个对应 Value 的权重。因此,我们可以计算 Values 的加权和来得到该测试图像通过检索 Cache Model 得到的分类预测。除此之外,我们还可以通过将测试图片特征和 CLIP 的 Textual Encoder 文本特征进行匹配,来得到 CLIP 的 zero-shot 预测。通过将两者进行线性加权求和,我们得到了最终的分类预测,该预测既蕴含了 CLIP 预训练的图像语言对比性知识,也结合了下游新数据集的 few-shot 知识,因此可以实现更强的图像分类准确率。
基于 Tip-Adapter 的网络结构,我们可以进一步将 Cache Model 中的 Keys 部分变为学习参数,即可以通过训练来进行更新,该方案为 Tip-Adapter-F。借助已经构建好的 Cache Model,Tip-Adapter-F 仅需要现有 CLIP-Adapter 十分之一的训练回合数和时间,就可以实现更高的性能,如表一所示。

图 1:Tip-Adapter 和 Tip-Adapter-F 的网络流程图
2.Tip-Adapter 和现有方案的区别与联系
对比 CLIP-Adapter,如图 2 所示,Tip-Adapter 存储的 Keys 和 Values 其实可以分别对应于 CLIP-Adapter 中 adapter 结构的两个线性层,只不过前者是不需要训练来构建的,后者是随机初始化,然后需要训练来学习最佳的参数。

图 2:Tip-Adapter 相比于 CLIP-Adapter
对比现有的其他构建 Cache Model 的方案,如图 3 所示,Tip-Adapter 的 Cache Model 可以看作是一种多模态的视觉语言 Cache。因为 CLIP 的 Textual Encoder 输出的特征可以看作是文本的 Key-Value,即相当于测试图片特征作为 Query,分别在视觉和文本的 Cache 中检索知识,相对于现有的仅含视觉 Cache 的方案,Tip-Adapter 能够利用多模态知识得到更强的识别性能。

图 3:Tip-Adapter 相比于其他构建 Cache Model 的方案
三.实验结果
1. 在 ImageNet 的分类准确率
图 4 和表 2 比较了 Tip-Adapter、Tip-Adapter-F 和现有各个方案在 1、2、4、8、16 shots 的 few-shot 图像分类准确率;表 3 比较了 16-shot ImageNet 数据集上使用不同 CLIP 的 Visual Encoder 的准确率比较。可见,我们的两种方案都在资源开销很小的情况下,达到了非常卓越的性能。


图 4 和表 2:ImageNet 数据集上不同方法的 1~16-shot 图像分类准确率比较

表 5:16-shot ImageNet 上不同 CLIP 的 Visual Encoder 的图像分类准确率比较
2. 在另外 10 个图像分类数据集
如图 5 所示,我们提供了另外 10 个图像分类数据集的准确率比较结果,分别是 StandfordCars,UCF101,Caltech101,Flowers102,SUN397,DTD,EuroSAT,FGVCAircraft,OxfordPets 和 Food101。如图所示,我们的 Tip-Adapter-F 均取得了最高的识别准确率。


图 5:另外 10 个数据集上不同方法的 1~16-shot 图像分类准确率比较
3. 领域泛化能力的测评
我们也测试了 Tip-Adapter 和 Tip-Adapter-F 在领域泛化(Domain Generalization)方面的表现。如表 6 所示,我们的两种方案都表现出了很强的鲁棒性以及特征迁移能力。

四.结论
本文提出了 Tip-Adapter,一种可以免于训练的将 CLIP 用于下游 few-shot 图像分类的方案。Tip-Adapter 通过构建一个 Key-Value Cache Model,来作为测试图片 Query 的知识检索库,并通过融合 Cache Model 的预测和 CLIP 的 zero-shot 预测,来得到更强的识别性能。我们期望 Tip-Adapter 可以启发更多预训练模型高效迁移的后续工作。
到这里,我们也就讲完了《无需下游训练,Tip-Adapter大幅提升CLIP图像分类准确率》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于图像,训练的知识点!
一块GPU,每秒20个模型!英伟达新玩具用GET3D造元宇宙
- 上一篇
- 一块GPU,每秒20个模型!英伟达新玩具用GET3D造元宇宙
- 下一篇
- 如何让人工智能变得可解释?
-
- 科技周边 · 人工智能 | 7小时前 | Notion
- Notion数据库合并方法及整合技巧
- 442浏览 收藏
-
- 科技周边 · 人工智能 | 7小时前 | 动漫风格
- Midjourney动漫风格怎么画Niji模式教程
- 301浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 | 邮件模板 DeepSeek
- DeepSeek写邮件技巧与高效模板分享
- 299浏览 收藏
-
- 科技周边 · 人工智能 | 9小时前 |
- DeepSeek+Outlook:智能邮件写作技巧
- 235浏览 收藏
-
- 科技周边 · 人工智能 | 10小时前 | ChatGPT
- AI编程新趋势,ChatGPT代码生成技巧解析
- 290浏览 收藏
-
- 科技周边 · 人工智能 | 10小时前 | GrokAI
- GrokAI生成教程与参数优化指南
- 356浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 |
- Kling画面不满意怎么改?局部重绘教程分享
- 392浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 | Grok Grok系统
- Grok官网入口及网页版链接汇总
- 366浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 | 天宫AI
- 天宫AI情感分析技巧与文本判断方法
- 421浏览 收藏
-
- 科技周边 · 人工智能 | 12小时前 | 通义千问
- 如何调整通义千问英语难度设置
- 196浏览 收藏
-
- 科技周边 · 人工智能 | 12小时前 |
- AI制作GIF表情包教程技巧分享
- 269浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3339次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3551次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3584次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4707次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3954次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览

