量子机器学习:新手指南
怎么入门科技周边编程?需要学习哪些知识点?这是新手们刚接触编程时常见的问题;下面golang学习网就来给大家整理分享一些知识点,希望能够给初学者一些帮助。本篇文章就来介绍《量子机器学习:新手指南》,涉及到,有需要的可以收藏一下
译者 | 布加迪
审校 | 孙淑娟
简介
欢迎来到量子机器学习世界!本教程将通过一个使用示例数据集的入门级项目,提供附有代码的分步走指导。本教程结束时,您将对如何使用量子计算机来执行机器学习任务有一番基本的理解,并帮助构建您的第一个量子模型。
但在深入学习本教程之前,先了解量子机器学习是什么、它为什么如此令人兴奋。
量子机器学习是量子计算和机器学习交汇的领域。它使用量子计算机来执行机器学习任务,比如分类、回归和聚类。量子计算机是一种功能强大的机器,使用量子比特(量子位)而不是传统比特来存储和处理信息。这使得它们执行某些任务的速度比传统计算机快得多,特别适合涉及大量数据的机器学习任务。
现在直接开始教程吧!
第1步:安装必要的库和依赖项。
我们在本教程中将使用PennyLane库用于量子机器学习,使用NumPy用于数值计算,使用Matplotlib用于数据可视化。您可以通过运行以下命令使用pip安装这些库:
!pip install pennylane !pip install numpy !pip install matplotlib
第2步:加载示例数据集。
我们在本教程中将使用Iris数据集,该数据集由鸢尾花的150个样本组成,这些鸢尾花有四个特征:萼片长度、萼片宽度、花瓣长度和花瓣宽度。该数据集包含在sklearn库中,所以我们可以使用以下代码来加载它:
from sklearn import datasets # Load the iris dataset iris = datasets.load_iris() X = iris['data'] y = iris['target']
第3步:将数据集分割成训练集和测试集。
我们将使用训练集来训练我们的量子模型,使用测试集来评估其性能。我们可以使用来自sklearn.model_selection 模块的 train_test_split函数来分割数据集:
from sklearn.model_selection import train_test_split # Split the dataset into training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
第4步:预处理数据。
在我们可以使用数据来训练量子模型之前,我们需要预处理数据。一个常见的预处理步骤是规范化,即调整数据,以便它有零平均值和单位方差。我们可以使用来自sklearn.preprocessing模块的 StandardScaler类来执行规范化:
from sklearn.preprocessing import StandardScaler # Initialize the scaler scaler = StandardScaler() # Fit the scaler to the training data scaler.fit(X_train) # Scale the training and test data X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test)
这段代码初始化StandardScaler对象,并使用fit方法将其拟合训练数据。然后,它使用transform方法来调整训练和测试数据。
规范化之所以是一个重要的预处理步骤,是由于它确保数据的所有特征都在同一尺度上,这可以改善量子模型的性能。
第5步:定义量子模型。
现在我们准备使用 PennyLane库来定义量子模型。第一步是导入必要的函数,并创建量子设备:
import pennylane as qml # Choose a device (e.g., 'default.qubit') device = qml.device('default.qubit')
下一步,我们将定义一个量子函数,它摄入数据作为输入,返回预测。我们将使用一个简单的量子神经网络,只有一层量子神经元:
@qml.qnode(device) def quantum_neural_net(weights, data): # Initialize the qubits qml.templates.AmplitudeEmbedding(weights, data) # Apply a layer of quantum neurons qml.templates.StronglyEntanglingLayers(weights, data) # Measure the qubits return qml.expval(qml.PauliZ(0))
该量子函数摄取两个变量:weights(这是量子神经网络的参数)和data(这是输入数据)。
第一行使用来自 PennyLane的AmplitudeEmbedding模板初始化量子位。该模板将数据映射到量子位的振幅上,以便保留数据点之间的距离。
第二行使用StronglyEntanglingLayers模板来应用一层量子神经元。该模板将一系列纠缠操作应用到量子位上,然后量子位可用于实现通用量子计算。
最后,最后一行以Pauli-Z度量基础测量量子位,并返回预期值。
第6步:定义成本函数。
为了训练量子模型,我们需要定义成本函数,以测量模型性能有多好。就本教程而言,我们将使用均方误差(MSE)作为成本函数:
def cost(weights, data, labels): # Make predictions using the quantum neural network predictions = quantum_neural_net(weights, data) # Calculate the mean squared error mse = qml.mean_squared_error(labels, predictions) return mse
该成本函数摄取三个变量:weights(这是量子模型的参数)、data(这是输入数据)和labels(这是数据的真实标签)。它使用量子神经网络基于输入数据做预测,并计算预测和真实标签之间的MSE。
MSE是机器学习中的常见成本函数,测量预测值和真实值之间的平均平方差。较小的MSE表明模型更拟合数据。
第7步:训练量子模型。
现在,我们准备使用梯度下降法来训练量子模型。我们将使用来自PennyLane 的AdamOptimizer类来执行优化:
# Initialize the optimizer opt = qml.AdamOptimizer(stepsize=0.01) # Set the number of training steps steps = 100 # Set the initial weights weights = np.random.normal(0, 1, (4, 2)) # Train the model for i in range(steps): # Calculate the gradients gradients = qml.grad(cost, argnum=0)(weights, X_train_scaled, y_train) # Update the weights opt.step(gradients, weights) # Print the cost if (i + 1) % 10 == 0: print(f'Step {i + 1}: cost = {cost(weights, X_train_scaled, y_train):.4f}')
这段代码初始化优化器,步长为0.01,并将训练步数设置为100。然后,它将模型的初始权重设置为从均值为0、标准差为1的正态分布中抽取的随机值。
在每个训练步骤中,代码使用 qml.grad 函数计算相对于权重的成本函数梯度。然后,它使用opt.step方法更新权重,并每10步输出成本。
梯度下降法是机器学习中常见的优化算法,它迭代更新模型参数以最小化成本函数。AdamOptimizer是梯度下降的一种变体,它使用自适应学习率,这可以帮助优化更快地收敛。
第8步:评估量子模型。
我们已经训练了量子模型,可以评估它在测试集上的性能。我们可以使用以下代码来测试:
# Make predictions on the test set predictions = quantum_neural_net(weights, X_test_scaled) # Calculate the accuracy accuracy = qml.accuracy(predictions, y_test) print(f'Test accuracy: {accuracy:.2f}')
这段代码使用量子神经网络基于测试集做预测,并使用qml.accuracy 函数计算预测准确性。然后,它输出测试准确性。
第9步:直观显示结果。
最后,我们可以使用Matplotlib直观显示量子模型的结果。比如说,我们可以对照真实标签绘制出测试集的预测结果:
import matplotlib.pyplot as plt # Plot the predictions plt.scatter(y_test, predictions) # Add a diagonal line x = np.linspace(0, 3, 4) plt.plot(x, x, '--r') # Add axis labels and a title plt.xlabel('True labels') plt.ylabel('Predictions') plt.title('Quantum Neural Network') # Show the plot plt.show()
这段代码将对照真实标签创建预测的散点图,增添对角线以表示完美预测。然后它为散点图添加轴线标签和标题,并使用plt.show函数来显示。
现在,我们已成功地构建了一个量子机器学习模型,并在示例数据集上评估了性能。
结果
为了测试量子模型的性能,我们运行了教程中提供的代码,获得了以下结果:
Step 10: cost = 0.5020 Step 20: cost = 0.3677 Step 30: cost = 0.3236 Step 40: cost = 0.3141 Step 50: cost = 0.3111 Step 60: cost = 0.3102 Step 70: cost = 0.3098 Step 80: cost = 0.3095 Step 90: cost = 0.3093 Step 100: cost = 0.3092 Test accuracy: 0.87
这些结果表明,量子模型能够从训练数据中学习,并基于测试集做出准确的预测。在整个训练过程中,成本稳步下降,这表明模型在学习过程中不断改进。最终的测试准确率为0.87,表现相当好,这表明该模型能够正确地分类大部分测试样例。
结论
量子机器学习是一个令人兴奋的领域,有许多潜在的应用,从优化供应链到预测股价,不一而足。我们希望本教程能让您了解量子计算机和机器学习的可能性,并激励您深入了解这个诱人的话题。
原文标题:Quantum Machine Learning: A Beginner’s Guide,作者:SPX
好了,本文到此结束,带大家了解了《量子机器学习:新手指南》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

- 上一篇
- 立即查看 MacOS Ventura 的 9 个新提示和技巧

- 下一篇
- 微软内战打响,ChatGPT对决新必应!13个灵魂拷问,新老AI各有所长
-
- 活力的黄蜂
- 这篇文章太及时了,好细啊,赞 👍👍,已加入收藏夹了,关注楼主了!希望楼主能多写科技周边相关的文章。
- 2023-06-19 22:09:39
-
- yajie
- 很好,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,看完之后很有帮助,总算是懂了,感谢大佬分享技术文章!
- 2023-05-17 18:49:58
-
- 坚定的悟空
- 这篇技术文章真及时,很详细,太给力了,已加入收藏夹了,关注作者了!希望作者能多写科技周边相关的文章。
- 2023-05-11 14:06:43
-
- 科技周边 · 人工智能 | 8小时前 |
- MistralAI发布多模态模型MistralMedium3
- 446浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 |
- 一季度中国车出口TOP10:俄罗斯位列第三
- 318浏览 收藏
-
- 科技周边 · 人工智能 | 9小时前 |
- 即梦ai导出4K视频攻略超清分辨率设置教程
- 241浏览 收藏
-
- 科技周边 · 人工智能 | 9小时前 |
- 用豆包A/生成的表情包如何赚钱
- 326浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- PPTFake答辩PPT生成器
- PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
- 13次使用
-
- Lovart
- SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
- 14次使用
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 27次使用
-
- PetGPT
- SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
- 26次使用
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 53次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览