当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 量子机器学习:新手指南

量子机器学习:新手指南

来源:51CTO.COM 2023-04-30 06:09:00 0浏览 收藏

怎么入门科技周边编程?需要学习哪些知识点?这是新手们刚接触编程时常见的问题;下面golang学习网就来给大家整理分享一些知识点,希望能够给初学者一些帮助。本篇文章就来介绍《量子机器学习:新手指南》,涉及到,有需要的可以收藏一下

​译者 | 布加迪

审校 | 孙淑娟

简介

量子机器学习:新手指南

欢迎来到量子机器学习世界!本教程将通过一个使用示例数据集的入门级项目,提供附有代码的分步走指导。本教程结束时,您将对如何使用量子计算机来执行机器学习任务有一番基本的理解,并帮助构建您的第一个量子模型。

但在深入学习本教程之前,先了解量子机器学习是什么、它为什么如此令人兴奋。

量子机器学习是量子计算和机器学习交汇的领域。它使用量子计算机来执行机器学习任务,比如分类、回归和聚类。量子计算机是一种功能强大的机器,使用量子比特(量子位)而不是传统比特来存储和处理信息。这使得它们执行某些任务的速度比传统计算机快得多,特别适合涉及大量数据的机器学习任务。

现在直接开始教程吧!

第1步:安装必要的库和依赖项。

我们在本教程中将使用PennyLane库用于量子机器学习,使用NumPy用于数值计算,使用Matplotlib用于数据可视化。您可以通过运行以下命令使用pip安装这些库:

!pip install pennylane
!pip install numpy
!pip install matplotlib

第2步:加载示例数据集。

我们在本教程中将使用Iris数据集,该数据集由鸢尾花的150个样本组成,这些鸢尾花有四个特征:萼片长度、萼片宽度、花瓣长度和花瓣宽度。该数据集包含在sklearn库中,所以我们可以使用以下代码来加载它:

from sklearn import datasets

# Load the iris dataset
iris = datasets.load_iris()
X = iris['data']
y = iris['target']

第3步:将数据集分割成训练集和测试集。

我们将使用训练集来训练我们的量子模型,使用测试集来评估其性能。我们可以使用来自sklearn.model_selection 模块的 train_test_split函数来分割数据集:

from sklearn.model_selection import train_test_split

# Split the dataset into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

第4步:预处理数据。

在我们可以使用数据来训练量子模型之前,我们需要预处理数据。一个常见的预处理步骤是规范化,即调整数据,以便它有零平均值和单位方差。我们可以使用来自sklearn.preprocessing模块的 StandardScaler类来执行规范化:

from sklearn.preprocessing import StandardScaler

# Initialize the scaler
scaler = StandardScaler()

# Fit the scaler to the training data
scaler.fit(X_train)

# Scale the training and test data
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

这段代码初始化StandardScaler对象,并使用fit方法将其拟合训练数据。然后,它使用transform方法来调整训练和测试数据。

规范化之所以是一个重要的预处理步骤,是由于它确保数据的所有特征都在同一尺度上,这可以改善量子模型的性能。

第5步:定义量子模型。

现在我们准备使用 PennyLane库来定义量子模型。第一步是导入必要的函数,并创建量子设备:

import pennylane as qml

# Choose a device (e.g., 'default.qubit')
device = qml.device('default.qubit')

下一步,我们将定义一个量子函数,它摄入数据作为输入,返回预测。我们将使用一个简单的量子神经网络,只有一层量子神经元:

@qml.qnode(device)
def quantum_neural_net(weights, data):
# Initialize the qubits
qml.templates.AmplitudeEmbedding(weights, data)

# Apply a layer of quantum neurons
qml.templates.StronglyEntanglingLayers(weights, data)

# Measure the qubits
return qml.expval(qml.PauliZ(0))

该量子函数摄取两个变量:weights(这是量子神经网络的参数)和data(这是输入数据)。

第一行使用来自 PennyLane的AmplitudeEmbedding模板初始化量子位。该模板将数据映射到量子位的振幅上,以便保留数据点之间的距离。

第二行使用StronglyEntanglingLayers模板来应用一层量子神经元。该模板将一系列纠缠操作应用到量子位上,然后量子位可用于实现通用量子计算。

最后,最后一行以Pauli-Z度量基础测量量子位,并返回预期值。

第6步:定义成本函数。

为了训练量子模型,我们需要定义成本函数,以测量模型性能有多好。就本教程而言,我们将使用均方误差(MSE)作为成本函数:

def cost(weights, data, labels):
# Make predictions using the quantum neural network
predictions = quantum_neural_net(weights, data)

# Calculate the mean squared error
mse = qml.mean_squared_error(labels, predictions)

return mse

该成本函数摄取三个变量:weights(这是量子模型的参数)、data(这是输入数据)和labels(这是数据的真实标签)。它使用量子神经网络基于输入数据做预测,并计算预测和真实标签之间的MSE。

MSE是机器学习中的常见成本函数,测量预测值和真实值之间的平均平方差。较小的MSE表明模型更拟合数据。

第7步:训练量子模型。

现在,我们准备使用梯度下降法来训练量子模型。我们将使用来自PennyLane 的AdamOptimizer类来执行优化:

# Initialize the optimizer
opt = qml.AdamOptimizer(stepsize=0.01)

# Set the number of training steps
steps = 100

# Set the initial weights
weights = np.random.normal(0, 1, (4, 2))

# Train the model
for i in range(steps):
# Calculate the gradients
gradients = qml.grad(cost, argnum=0)(weights, X_train_scaled, y_train)

# Update the weights
opt.step(gradients, weights)

# Print the cost
if (i + 1) % 10 == 0:
print(f'Step {i + 1}: cost = {cost(weights, X_train_scaled, y_train):.4f}')

这段代码初始化优化器,步长为0.01,并将训练步数设置为100。然后,它将模型的初始权重设置为从均值为0、标准差为1的正态分布中抽取的随机值。

在每个训练步骤中,代码使用 qml.grad 函数计算相对于权重的成本函数梯度。然后,它使用opt.step方法更新权重,并每10步输出成本。

梯度下降法是机器学习中常见的优化算法,它迭代更新模型参数以最小化成本函数。AdamOptimizer是梯度下降的一种变体,它使用自适应学习率,这可以帮助优化更快地收敛。

第8步:评估量子模型。

我们已经训练了量子模型,可以评估它在测试集上的性能。我们可以使用以下代码来测试:

# Make predictions on the test set
predictions = quantum_neural_net(weights, X_test_scaled)

# Calculate the accuracy
accuracy = qml.accuracy(predictions, y_test)

print(f'Test accuracy: {accuracy:.2f}')

这段代码使用量子神经网络基于测试集做预测,并使用qml.accuracy 函数计算预测准确性。然后,它输出测试准确性。

第9步:直观显示结果。

最后,我们可以使用Matplotlib直观显示量子模型的结果。比如说,我们可以对照真实标签绘制出测试集的预测结果:

import matplotlib.pyplot as plt

# Plot the predictions
plt.scatter(y_test, predictions)

# Add a diagonal line
x = np.linspace(0, 3, 4)
plt.plot(x, x, '--r')

# Add axis labels and a title
plt.xlabel('True labels')
plt.ylabel('Predictions')
plt.title('Quantum Neural Network')

# Show the plot
plt.show()

这段代码将对照真实标签创建预测的散点图,增添对角线以表示完美预测。然后它为散点图添加轴线标签和标题,并使用plt.show函数来显示。

现在,我们已成功地构建了一个量子机器学习模型,并在示例数据集上评估了性能。

结果

为了测试量子模型的性能,我们运行了教程中提供的代码,获得了以下结果:

Step 10: cost = 0.5020
Step 20: cost = 0.3677
Step 30: cost = 0.3236
Step 40: cost = 0.3141
Step 50: cost = 0.3111
Step 60: cost = 0.3102
Step 70: cost = 0.3098
Step 80: cost = 0.3095
Step 90: cost = 0.3093
Step 100: cost = 0.3092
Test accuracy: 0.87

这些结果表明,量子模型能够从训练数据中学习,并基于测试集做出准确的预测。在整个训练过程中,成本稳步下降,这表明模型在学习过程中不断改进。最终的测试准确率为0.87,表现相当好,这表明该模型能够正确地分类大部分测试样例。

结论

量子机器学习是一个令人兴奋的领域,有许多潜在的应用,从优化供应链到预测股价,不一而足。我们希望本教程能让您了解量子计算机和机器学习的可能性,并激励您深入了解这个诱人的话题。

原文标题:Quantum Machine Learning: A Beginner’s Guide,作者:SPX​


好了,本文到此结束,带大家了解了《量子机器学习:新手指南》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
立即查看 MacOS Ventura 的 9 个新提示和技巧立即查看 MacOS Ventura 的 9 个新提示和技巧
上一篇
立即查看 MacOS Ventura 的 9 个新提示和技巧
微软内战打响,ChatGPT对决新必应!13个灵魂拷问,新老AI各有所长
下一篇
微软内战打响,ChatGPT对决新必应!13个灵魂拷问,新老AI各有所长
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    13次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    14次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    27次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    26次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    53次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码