当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 一文浅谈深度学习泛化能力

一文浅谈深度学习泛化能力

来源:51CTO.COM 2023-04-16 21:37:37 0浏览 收藏

小伙伴们对科技周边编程感兴趣吗?是否正在学习相关知识点?如果是,那么本文《一文浅谈深度学习泛化能力》,就很适合你,本篇文章讲解的知识点主要包括。在之后的文章中也会多多分享相关知识点,希望对大家的知识积累有所帮助!

一文浅谈深度学习泛化能力

一、DNN泛化能力的问题

论文主要探讨的是, 为什么过参数的神经网络模型还能有不错的泛化性?即并不是简单记忆训练集,而是从训练集中总结出一个通用的规律,从而可以适配于测试集(泛化能力)。

一文浅谈深度学习泛化能力

以经典的决策树模型为例, 当树模型学习数据集的通用规律时:一种好的情况,假如树第一个分裂节点时,刚好就可以良好区分开不同标签的样本,深度很小,相应的各叶子上面的样本数是够的(即统计规律的数据量的依据也是比较多的),那这会得到的规律就更有可能泛化到其他数据。(即:拟合良好, 有泛化能力)。

一文浅谈深度学习泛化能力

另外一种较差的情况,如果树学习不好一些通用的规律,为了学习这个数据集,那树就会越来越深,可能每个叶子节点分别对应着少数样本(少数据带来统计信息可能只是噪音),最后,死记硬背地记住所有数据(即:过拟合 无泛化能力)。我们可以看到过深(depth)的树模型很容易过拟合。

那么过参数化的神经网络如何达到良好的泛化性呢?

二、 DNN泛化能力的原因

本文是从一个简单通用的角度解释——在神经网络的梯度下降优化过程上,探索泛化能力的原因:

我们总结了梯度相干理论 :来自不同样本的梯度产生相干性,是神经网络能有良好的泛化能力原因。当不同样本的梯度在训练过程中对齐良好,即当它们相干时,梯度下降是稳定的,可以很快收敛,并且由此产生的模型可以有良好的泛化性。否则,如果样本太少或训练时间过长,可能无法泛化。

一文浅谈深度学习泛化能力

基于该理论,我们可以做出如下解释。

2.1 宽度神经网络的泛化性

更宽的神经网络模型具有良好的泛化能力。这是因为,更宽的网络都有更多的子网络,对比小网络更有产生梯度相干的可能,从而有更好的泛化性。换句话说,梯度下降是一个优先考虑泛化(相干性)梯度的特征选择器,更广泛的网络可能仅仅因为它们有更多的特征而具有更好的特征。

  • 论文原文:Generalization and width.  Neyshabur et al. [2018b] found that wider networks generalize better.  Can  we  now  explain  this?  Intuitively,  wider  networks  have  more  sub-networks  at any given level, and so the sub-network with maximum coherence in a wider network may be more coherent than its counterpart in a thinner network, and hence generalize better.  In other words,  since—as discussed in Section 10—gradient descent is a feature selector that prioritizes  well-generalizing  (coherent)  features,  wider  networks  are  likely  to  have  better features  simply  because  they  have  more  features.  In  this  connection,  see  also  the  Lottery Ticket Hypothesis [Frankle and Carbin, 2018]
  • 论文链接:https://github.com/aialgorithm/Blog

但是个人觉得,这还是要区分下网络输入层/隐藏层的宽度。特别对于数据挖掘任务的输入层,由于输入特征是通常是人工设计的,需要考虑下做下特征选择(即减少输入层宽度),不然直接输入特征噪音,对于梯度相干性影响不也是有干扰的。

2.2 深度神经网络的泛化性

越深的网络,梯度相干现象被放大,有更好的泛化能力。

一文浅谈深度学习泛化能力

在深度模型中,由于层之间的反馈加强了有相干性的梯度,存在相干性梯度的特征(W6)和非相干梯度的特征(W1)之间的相对差异在训练过程中呈指数放大。从而使得更深的网络更偏好相干梯度,从而更好泛化能力。

一文浅谈深度学习泛化能力

2.3 早停(early-stopping)

通过早停我们可以减少非相干梯度的过多影响,提高泛化性。

在训练的时候,一些容易样本比其他样本(困难样本)更早地拟合。训练前期,这些容易样本的相干梯度做主导,并很容易拟合好。训练后期,以困难样本的非相干梯度主导了平均梯度g(wt),从而导致泛化能力变差,这个时候就需要早停。

一文浅谈深度学习泛化能力

  • (注:简单的样本,是那些在数据集里面有很多梯度共同点的样本,正由于这个原因,大多数梯度对它有益,收敛也比较快。)

2.4  全梯度下降 VS  学习率

我们发现全梯度下降也可以有很好的泛化能力。此外,仔细的实验表明随机梯度下降并不一定有更优的泛化,但这并不排除随机梯度更易跳出局部最小值、起着正则化等的可能性。

  • Based on our theory, finite learning rate, and mini-batch stochasticity are not necessary for generalization

我们认为较低的学习率可能无法降低泛化误差,因为较低的学习率意味着更多的迭代次数(与早停相反)。

  • Assuming  a  small  enough  learning  rate,  as  training  progresses,  the  generalization  gap cannot  decrease.  This  follows  from  the  iterative  stability  analysis  of  training:  with 40 more  steps,  stability  can  only  degrade.  If  this  is  violated  in  a  practical  setting,  it  would point to an interesting limitation of the theory

2.5 L2、L1正则化

目标函数加入L2、L1正则化,相应的梯度计算, L1正则项需增加的梯度为sign(w) ,L2梯度为w。以L2正则为例,相应的梯度W(i+1)更新公式为:图片

一文浅谈深度学习泛化能力

我们可以把“L2正则化(权重衰减)”看作是一种“背景力”,可将每个参数推近于数据无关的零值 ( L1容易得到稀疏解,L2容易得到趋近0的平滑解) ,来消除在弱梯度方向上影响。只有在相干梯度方向的情况下,参数才比较能脱离“背景力”,基于数据完成梯度更新。

一文浅谈深度学习泛化能力

2.6 梯度下降算法的进阶

  • Momentum 、Adam等梯度下降算法

Momentum 、Adam等梯度下降算法,其参数W更新方向不仅由当前的梯度决定,也与此前累积的梯度方向有关(即,保留累积的相干梯度的作用)。这使得参数中那些梯度方向变化不大的维度可以加速更新,并减少梯度方向变化较大的维度上的更新幅度,由此产生了加速收敛和减小震荡的效果。

  • 抑制弱梯度方向的梯度下降

我们可以通过优化批次梯度下降算法,来抑制弱梯度方向的梯度更新,进一步提高了泛化能力。比如,我们可以使用梯度截断(winsorized gradient descent),排除梯度异常值后的再取平均值。或者取梯度的中位数代替平均值,以减少梯度异常值的影响。

一文浅谈深度学习泛化能力

小结

文末说两句,对于深度学习的理论,有兴趣可以看下论文提及的相关研究。

文中关于深度学习,神经网络的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《一文浅谈深度学习泛化能力》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
新型口罩可检测周边有无新冠病毒,10分钟内发出预警新型口罩可检测周边有无新冠病毒,10分钟内发出预警
上一篇
新型口罩可检测周边有无新冠病毒,10分钟内发出预警
机器学习正在赋能制药行业
下一篇
机器学习正在赋能制药行业
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    151次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    143次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    158次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    151次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    160次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码