当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 认真的吗?让机器狗当守门员,还发了篇论文

认真的吗?让机器狗当守门员,还发了篇论文

来源:51CTO.COM 2023-04-20 08:28:26 0浏览 收藏

编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《认真的吗?让机器狗当守门员,还发了篇论文》,文章讲解的知识点主要包括,如果你对科技周边方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

让一个机器狗担当足球守门员,靠谱吗?靠不靠谱,我们先看看效果在下结论。

工作人员一次很温和的进攻,机器狗拦住了球:

图片

加点难度,来个抛物线进球,也不再话下:

图片

用手抛球有作弊嫌疑?用脚试试,机器狗也能把球门守的死死的

图片

有趣的是,该研究还尝试让一只机器狗踢球,另一只当守门员,两只机器狗自己也能玩挺好:

图片

看完效果,感觉机器狗当守门员还挺靠谱。这款机器狗是 MIT 在 2019 年研发的 Mini Cheetah,现在来自加州大学伯克利分校等机构的研究者为 Mini Cheetah 部署了一个新的强化学习框架,让它完成足球守门任务,守门成功率高达 87.5%。

论文地址:https://arxiv.org/pdf/2210.04435.pdf

4 米开外踢球

Mini Cheetah 仅用不到 1 秒成功守门

让 Mini Cheetah 学会守门还是一件比较难的事,因为这涉及物体(例如球)抛出的高度以及动态移动的位置,具体而言,一方操纵一个快速移动的球,球的方向和位置不确定,而另一方需要迅速判断球的位置以阻止进球。想要完成这一任务,需要教会机器人动态移动它的身体,同时确保它的脚 (或脸) 到达它们需要及时阻挡球的地方,这基本上是将两个难题结合在一起。

该研究的解决办法是将运动控制器与末端执行器轨迹规划相结合,这样一来就可以找到最佳的方法让 Mini Cheetah 在球到达目标不到一秒的时间内,进行阻挡。

完成上述过程,还需要训练 Mini Cheetah 掌握一套有用的守门员技能,例如 Mini Cheetah 需要掌握在地面附近和靠近地面的地方对球进行侧身拦截、掌握俯冲到达球门的下角技术、跳跃到球门的顶部和上角。做完这些动作,Mini Cheetah 都可以恢复并最终安全着陆。每个技能的参考动作都是手动编程的,在模拟中进行训练,然后直接迁移到机器人上。

Mini Cheetah 防守的球门宽 1.5m,高 0.9m,球(3 号)从约 4m 外踢出,球被外部跟踪,然后 Mini Cheetah 拦球。让这么小的机器狗完成拦球动作,其表现是令人印象深刻的。

图片

该研究表明,这款机器狗系统可以将在仿真中学习到的动态动作和守门员技能迁移到一个真正的四足机器人上,在现实世界中,对随机射门的守门成功率为 87.5%。而人类足球守门员的平均成功率是 69%。研究人员表示,他们所提出的框架可以扩展到其他场景,例如多技能足球。

下面我们来看看支持这款机器狗的背后框架。

分层强化学习框架

首先,让四足机器人做足球守门员是一个很有挑战性的问题,因为它必须要同时解决预测物体运动轨迹和机器人捕获非抓握物体(球体)两个实际问题。机器人需要在很短的时间内(通常不到一秒)对空中飞行的球做出反应并拦截。

为了完成这个挑战,研究团队提出了一个分层无模型强化学习 (RL) 框架。该框架包含一个针对不同运动技能的多个控制策略,覆盖了目标的不同区域。

图片

这些控制策略让机器人能够跟踪随机参数化末端执行器的轨迹,同时执行特定的运动技能,例如跳跃拦球、扑球和顺势拦住地面滚动的球。

图片

RL 框架中包含一个高级规划器,它帮助机器人确定所需的运动技能和规划末端执行器轨迹,以拦截飞向不同目标区域的球。

该研究在 MIT 2019 年提出的 Mini Cheetah 四足机器人上部署了上述 RL 框架,实验表明这种 RL 框架能够让四足机器人有效拦截现实世界中快速移动的球。

图片

此前对四足机器人 RL 框架的研究主要集中在低级运动控制上,例如让机器人按要求速度步行、模仿参考运动。而该研究提出的框架将学习到的运动技能扩展到更高级别的任务上,成功使用高级规划让四足机器人以敏捷的动作精确拦截快速移动的足球。这对四足机器人的高级规划控制具有重要意义。

理论要掌握,实操不能落!以上关于《认真的吗?让机器狗当守门员,还发了篇论文》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
人工智能推动更安全的公路计划人工智能推动更安全的公路计划
上一篇
人工智能推动更安全的公路计划
LLVM之父Chris Lattner:为什么我们要重建AI基础设施软件
下一篇
LLVM之父Chris Lattner:为什么我们要重建AI基础设施软件
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    32次使用
  • MeowTalk喵说:AI猫咪语言翻译,增进人猫情感交流
    MeowTalk喵说
    MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
    30次使用
  • SEO标题Traini:全球首创宠物AI技术,提升宠物健康与行为解读
    Traini
    SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
    28次使用
  • 可图AI 2.0:快手旗下新一代图像生成大模型,专业创作者与普通用户的多模态创作引擎
    可图AI 2.0图片生成
    可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
    31次使用
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    46次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码