当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 重新审视Prompt优化问题,预测偏差让语言模型上下文学习更强

重新审视Prompt优化问题,预测偏差让语言模型上下文学习更强

来源:51CTO.COM 2023-04-16 16:03:17 0浏览 收藏

一分耕耘,一分收获!既然打开了这篇文章《重新审视Prompt优化问题,预测偏差让语言模型上下文学习更强》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!

图片

  • 论文链接: https://arxiv.org/abs/2303.13217
  • 代码链接: https://github.com/MaHuanAAA/g_fair_searching

研究介绍

大型语言模型在上下文学习中表现出了惊人的能力,这些模型可以通过几个输入输出示例构建的上下文进行学习,无需微调优化直接应用于许多下游任务。然而,先前的研究表明,由于训练样本 (training examples)、示例顺序 (example order) 和提示格式 (prompt formats) 的变化,上下文学习可能会表现出高度的不稳定性。因此,构建适当的 prompt 对于提高上下文学习的表现至关重要。

以前的研究通常从两个方向研究这个问题:(1)编码空间中的提示调整 (prompt tuning),(2)在原始空间中进行搜索 (prompt searching)。

Prompt tuning 的关键思想是将任务特定的 embedding 注入隐藏层,然后使用基于梯度的优化来调整这些 embeddings。然而,这些方法需要修改模型的原始推理过程并且获得模型梯度,这在像 GPT-3 和 ChatGPT 这样的黑盒 LLM 服务中是不切实际的。此外,提示调整会引入额外的计算和存储成本,这对于 LLM 通常是昂贵的。

更可行且高效的方法是通过在原始文本空间中搜索近似的演示样本和顺序来优化提示。一些工作从 “Global view” 或 “Local view” 构建提示。基于 Global view 的方法通常将提示的不同元素作为整体进行优化,以达到更优异的性能。例如,Diversity-guided [1] 的方法利用演示的整体多样性的搜索,或者试图优化整个示例组合顺序 [2],以实现更好的性能。与 Global view 相反,基于 Local view 的方法通过设计不同的启发式选择标准,例如 KATE [3]。

但这些方法都有各自的局限性:(1)目前的大多数研究主要集中在沿着单个因素搜索提示,例如示例选择或顺序。然而各个因素对性能的总体影响尚不清楚。(2)这些方法通常基于启发式标准,需要一个统一的视角来解释这些方法是如何工作的。(3)更重要的是,现有的方法会全局或局部地优化提示,这可能会导致性能不理想。

本文从 “预测偏差” 的角度重新审视了 NLP 领域中的 prompt 优化问题,发现了一个关键现象:一个给定的 prompt 的质量取决于它的内在偏差。基于这个现象,文章提出了一个基于预测偏差的替代标准来评估 prompt 的质量,该度量方法能够在不需要额外开发集 (development set) 的情况下通过单个前向过程来评估 prompt。

具体来说,通过在一个给定的 prompt 下输入一个 “无内容” 的测试,期望模型输出一个均匀的预测分布(一个 “无内容” 的输入不包含任何有用的信息)。因此,文中利用预测分布的均匀性来表示给定 prompt 的预测偏差。这与先前的后校准方法 [4] 用的指标类似,但与后校准在固定的 prompt 情况下使用这个 metric 进行概率后校准不同的是,文中进一步探索了其在自动搜索近似 prompt 中的应用。并通过大量实验证实了一个给定 prompt 的内在偏差和它在给定测试集上的平均任务表现之间的相关性。

图片

此外,这种基于偏差的度量使该方法能够以 “局部到全局” 的方式搜索合适的 prompt。然而,一个现实的问题是无法通过遍历所有组合的方式搜索最优解,因为它的复杂度将超过 O (N!)。

该工作提出了两种新颖的策略以高效的方式搜索高质量的 prompt:(1) T-fair-Prompting (2) G-fair-Prompting。T-fair-Prompting 使用一种直观的方式,首先计算每个示例单独组成 prompt 的偏差,然后选择 Top-k 个最公平示例组合成最终 prompt。这个策略相当高效,复杂度为 O (N)。但需要注意的是,T-fair-Prompting 基于这样的假设:最优的 prompt 通常是由偏差最小的示例构建的。然而,这在实际情况下可能并不成立,并且往往会导致局部最优解。因此,文章中进一步介绍了 G-fair-Prompting 来改善搜索质量。G-fair-Prompting 遵循贪心搜索的常规过程,通过在每个步骤上进行局部最优选择来找到最优解。在算法的每一步,所选择的示例都能使更新的 prompt 获得最佳的公平性,最坏情况时间复杂度为 O (N^2),搜索质量显著提高。G-fair-Prompting 从局部到全局的角度进行工作,其中在早期阶段考虑单个样本的偏差,而在后期阶段则侧重于减少全局预测偏差。

实验结果

该研究提出了一种有效和可解释的方法来提高语言模型的上下文学习性能,这种方法可以应用于各种下游任务。文章验证了这两种策略在各种 LLMs(包括 GPT 系列模型和最近发布的 LMaMA 系列)上的有效性,G-fair-Prompting 与 SOTA 方法相比,在不同的下游任务上获得了超过 10%的相对改进。

图片

与该研究最相近的是 Calibration-before-use [4] 方法,两者都使用 “无内容” 的输入提高模型的表现。但是,Calibration-before-use 方法旨在使用该标准来校准输出,而该输出仍然容易受到所使用示例的质量的影响。与之相比,本文旨在搜索原始空间找到近似最优的 prompt,以提高模型的性能,而不需要对模型输出进行任何后处理。此外,该文首次通过大量实验验证了预测偏差与最终任务性能之间的联系,这在 Calibration-before-use 方法中尚未研究。

图片

通过实验还能发现,即使不进行校准,该文章所提方法选择的 prompt 也可以优于经过校准的随机选择的 prompt。这表明该方法可以在实际应用中具有实用性和有效性,可以为未来的自然语言处理研究提供启示。

到这里,我们也就讲完了《重新审视Prompt优化问题,预测偏差让语言模型上下文学习更强》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于研究的知识点!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
如何检查您的iPhone是否已解锁任何运营商如何检查您的iPhone是否已解锁任何运营商
上一篇
如何检查您的iPhone是否已解锁任何运营商
笔记本就能运行的ChatGPT平替来了,附完整版技术报告
下一篇
笔记本就能运行的ChatGPT平替来了,附完整版技术报告
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    14次使用
  • MeowTalk喵说:AI猫咪语言翻译,增进人猫情感交流
    MeowTalk喵说
    MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
    14次使用
  • SEO标题Traini:全球首创宠物AI技术,提升宠物健康与行为解读
    Traini
    SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
    17次使用
  • 可图AI 2.0:快手旗下新一代图像生成大模型,专业创作者与普通用户的多模态创作引擎
    可图AI 2.0图片生成
    可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
    19次使用
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    32次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码