Transformer模仿大脑,在预测大脑成像上超越42个模型,还能够模拟感官与大脑之间的传输
科技周边不知道大家是否熟悉?今天我将给大家介绍《Transformer模仿大脑,在预测大脑成像上超越42个模型,还能够模拟感官与大脑之间的传输》,这篇文章主要会讲到等等知识点,如果你在看完本篇文章后,有更好的建议或者发现哪里有问题,希望大家都能积极评论指出,谢谢!希望我们能一起加油进步!
现在很多AI应用模型,都不得不提到一个模型结构:
Transformer。
它抛弃了传统的CNN和RNN,完全由Attention机制组成。
Transformer不仅赋予了各种AI应用模型写文作诗的功能,而且在多模态方面也大放异彩。
尤其是ViT(Vision Transformer)出来之后,CV和NLP之间的模型壁垒被打破,仅使用Transformer一个模型就能够处理多模态的任务。
(谁看完不得感叹一句它的强大啊)
虽然一开始Transformer是为语言任务而设计的,但它在模仿大脑方面也有着很大的潜力。
这不,有位科学作家写了篇博客,就是关于Transformer是如何进行大脑建模的。
来康康他是怎么说的?
Transformer:做大脑做的事
首先,还得梳理一下它的演变过程。
Transformer机制在5年前首次出现,它能够有这么强大的表现,很大程度上归功于其Self-attention机制。
至于Transformer是如何模仿大脑的,继续往下看。
在2020年,奥地利计算机科学家Sepp Hochreiter的研究团队利用Transformer重组了Hopfield神经网络 (一种记忆检索模型,HNN)。
其实,Hopfield神经网络在40年前就已经被提出,而研究团队之所以时隔数十年选择重组这个模型原因如下:
其一,这个网络遵循一个普遍的规律:同时活跃的神经元之间彼此会建立很强的联系。
其二,Hopfield神经网络在检索记忆的过程中与Transformer执行Self-attention机制时有一定的相似之处。
所以研究团队便将HNN进行重组,让各个神经元之间建立更好的联系,以便存储和检索更多的记忆。
重组的过程,简单来说,就是把Transformer的注意力机制融合进HNN,使原来不连续的HNN变为可连续态。
△图源:维基百科
重组之后的Hopfield网络可以作为层集成到深度学习架构中,以允许存储和访问原始输入数据、中间结果等。
因此,Hopfield本人和麻省理工学院沃森人工智能实验室的Dmitry Krotov都称:
基于Transformer的Hopfield神经网络在生物学上是合理的。
虽说这在一定程度上与大脑的工作原理相像,但在某些方面还不够准确。
因此,计算神经科学家Whittington和Behrens调整了Hochreiter的方法,对重组后的Hopfield网络做出了一些修正,进一步提高了该模型在神经科学任务中(复制大脑中的神经放电模式)的表现。
△Tim Behrens (左) James Whittington(右) 图源:quantamagazine
简单来说,就是在编码-解码时,模型不再把记忆编码为线性序列,而是将其编码为高维空间中的坐标。
具体而言,就是在模型中引入了TEM(Tolman-Eichenbaum Machine)。
TEM是为了模仿海马体的空间导航作用而构建的一个关联记忆系统。
它能够概括空间和非空间的结构知识,预测在空间和关联记忆任务中观察到的神经元表现,并解释在海马和内嗅皮层中的重新映射现象。
将拥有这么多功能的TEM与Transformer合并,组成TEM-transformer(TEM-t)。
然后,再让TEM-t模型在多个不同的空间环境中进行训练,环境的结构如下图所示。
在TEM-t中,它依旧拥有Transformer的Self-attention机制。这样一来,模型的学习成果便能迁移到新环境中,用于预测新的空间结构。
研究也显示,相较于TEM,TEM-t在进行神经科学任务时效率更高,而且它也能在更少学习样本的情况下处理更多的问题。
Transformer在模仿大脑模式的道路上越来越深入,其实换句话说,Transformer模式的发展也在不断促进我们理解大脑功能的运作原理。
不仅如此,在某些方面,Transformer还能提高我们对大脑其他功能的理解。
Transformer帮助我们理解大脑
比如说,在去年,计算神经科学家Martin Schrimpf分析了43种不同的神经网络模型,以观察它们对人类神经活动测量结果:功能磁共振成像(fMRI)和皮层脑电图(EEG)报告的预测能力。
其中,Transformer模型几乎可以预测成像中发现的所有变化。
倒推一下,或许我们也可以从Transformer模型中预见大脑对应功能的运作。
除此之外,最近计算机科学家Yujin Tang和 David Ha设计了一个模型,可以通过Transformer模型以随机、无序的方式有意识地发送大量数据,模拟人体如何向大脑传输感官观察结果。
这个Transformer就像人类的大脑一样,能够成功地处理无序的信息流。
虽然Transformer模型在不断进步,但也只是朝着精确大脑模型迈出的一小步,到达终点还需要更深入的研究。
如果想详细了解Transformer是如何模仿人脑的,可以戳下方链接~
参考链接:
[1]https://www.quantamagazine.org/how-ai-transformers-mimic-parts-of-the-brain-20220912/
[2]https://www.pnas.org/doi/10.1073/pnas.2105646118
[3]https://openreview.net/forum?id=B8DVo9B1YE0
到这里,我们也就讲完了《Transformer模仿大脑,在预测大脑成像上超越42个模型,还能够模拟感官与大脑之间的传输》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于模型,大脑,模仿的知识点!

- 上一篇
- AI绘画新思路:国产开源50亿参数新模型,合成可控性、质量实现飞跃

- 下一篇
- 别为ChatGPT高兴太早!背后的RLHF机制还有三个致命缺陷
-
- 科技周边 · 人工智能 | 1小时前 |
- KlavisAI—开源MCP平台,秒接生产级服务器
- 380浏览 收藏
-
- 科技周边 · 人工智能 | 10小时前 |
- 沃尔沃XC70亮相,SMA混动加持,年内上市
- 236浏览 收藏
-
- 科技周边 · 人工智能 | 14小时前 |
- 用豆包A/生成的表情包如何赚钱
- 191浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 10次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 10次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 10次使用
-
- 可图AI 2.0图片生成
- 可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
- 15次使用
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 27次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览