当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > Transformer模仿大脑,在预测大脑成像上超越42个模型,还能够模拟感官与大脑之间的传输

Transformer模仿大脑,在预测大脑成像上超越42个模型,还能够模拟感官与大脑之间的传输

来源:51CTO.COM 2023-04-15 08:02:55 0浏览 收藏
推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

科技周边不知道大家是否熟悉?今天我将给大家介绍《Transformer模仿大脑,在预测大脑成像上超越42个模型,还能够模拟感官与大脑之间的传输》,这篇文章主要会讲到等等知识点,如果你在看完本篇文章后,有更好的建议或者发现哪里有问题,希望大家都能积极评论指出,谢谢!希望我们能一起加油进步!

现在很多AI应用模型,都不得不提到一个模型结构:

Transformer。

它抛弃了传统的CNN和RNN,完全由Attention机制组成。

Transformer不仅赋予了各种AI应用模型写文作诗的功能,而且在多模态方面也大放异彩。

尤其是ViT(Vision Transformer)出来之后,CV和NLP之间的模型壁垒被打破,仅使用Transformer一个模型就能够处理多模态的任务。

(谁看完不得感叹一句它的强大啊)

虽然一开始Transformer是为语言任务而设计的,但它在模仿大脑方面也有着很大的潜力。

这不,有位科学作家写了篇博客,就是关于Transformer是如何进行大脑建模的。

图片

来康康他是怎么说的?

Transformer:做大脑做的事

首先,还得梳理一下它的演变过程。

Transformer机制在5年前首次出现,它能够有这么强大的表现,很大程度上归功于其Self-attention机制。

至于Transformer是如何模仿大脑的,继续往下看。

在2020年,奥地利计算机科学家Sepp Hochreiter的研究团队利用Transformer重组了Hopfield神经网络 (一种记忆检索模型,HNN)。

其实,Hopfield神经网络在40年前就已经被提出,而研究团队之所以时隔数十年选择重组这个模型原因如下:

其一,这个网络遵循一个普遍的规律:同时活跃的神经元之间彼此会建立很强的联系。

其二,Hopfield神经网络在检索记忆的过程中与Transformer执行Self-attention机制时有一定的相似之处。

所以研究团队便将HNN进行重组,让各个神经元之间建立更好的联系,以便存储和检索更多的记忆。

重组的过程,简单来说,就是把Transformer的注意力机制融合进HNN,使原来不连续的HNN变为可连续态。

图片

△图源:维基百科

重组之后的Hopfield网络可以作为层集成到深度学习架构中,以允许存储和访问原始输入数据、中间结果等。

因此,Hopfield本人和麻省理工学院沃森人工智能实验室的Dmitry Krotov都称:

基于Transformer的Hopfield神经网络在生物学上是合理的。

虽说这在一定程度上与大脑的工作原理相像,但在某些方面还不够准确。

因此,计算神经科学家Whittington和Behrens调整了Hochreiter的方法,对重组后的Hopfield网络做出了一些修正,进一步提高了该模型在神经科学任务中(复制大脑中的神经放电模式)的表现。

图片

△Tim Behrens (左) James Whittington(右) 图源:quantamagazine

简单来说,就是在编码-解码时,模型不再把记忆编码为线性序列,而是将其编码为高维空间中的坐标。

具体而言,就是在模型中引入了TEM(Tolman-Eichenbaum Machine)。
TEM是为了模仿海马体的空间导航作用而构建的一个关联记忆系统。

它能够概括空间和非空间的结构知识,预测在空间和关联记忆任务中观察到的神经元表现,并解释在海马和内嗅皮层中的重新映射现象。

将拥有这么多功能的TEM与Transformer合并,组成TEM-transformer(TEM-t)。

然后,再让TEM-t模型在多个不同的空间环境中进行训练,环境的结构如下图所示。

图片

在TEM-t中,它依旧拥有Transformer的Self-attention机制。这样一来,模型的学习成果便能迁移到新环境中,用于预测新的空间结构。

研究也显示,相较于TEM,TEM-t在进行神经科学任务时效率更高,而且它也能在更少学习样本的情况下处理更多的问题。

图片

Transformer在模仿大脑模式的道路上越来越深入,其实换句话说,Transformer模式的发展也在不断促进我们理解大脑功能的运作原理。

不仅如此,在某些方面,Transformer还能提高我们对大脑其他功能的理解。

Transformer帮助我们理解大脑

比如说,在去年,计算神经科学家Martin Schrimpf分析了43种不同的神经网络模型,以观察它们对人类神经活动测量结果:功能磁共振成像(fMRI)和皮层脑电图(EEG)报告的预测能力。

其中,Transformer模型几乎可以预测成像中发现的所有变化。

倒推一下,或许我们也可以从Transformer模型中预见大脑对应功能的运作。

除此之外,最近计算机科学家Yujin Tang和 David Ha设计了一个模型,可以通过Transformer模型以随机、无序的方式有意识地发送大量数据,模拟人体如何向大脑传输感官观察结果。

这个Transformer就像人类的大脑一样,能够成功地处理无序的信息流。

虽然Transformer模型在不断进步,但也只是朝着精确大脑模型迈出的一小步,到达终点还需要更深入的研究。

如果想详细了解Transformer是如何模仿人脑的,可以戳下方链接~

参考链接:

[1]https://www.quantamagazine.org/how-ai-transformers-mimic-parts-of-the-brain-20220912/

[2]https://www.pnas.org/doi/10.1073/pnas.2105646118

[3]https://openreview.net/forum?id=B8DVo9B1YE0​

到这里,我们也就讲完了《Transformer模仿大脑,在预测大脑成像上超越42个模型,还能够模拟感官与大脑之间的传输》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于模型,大脑,模仿的知识点!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
AI绘画新思路:国产开源50亿参数新模型,合成可控性、质量实现飞跃AI绘画新思路:国产开源50亿参数新模型,合成可控性、质量实现飞跃
上一篇
AI绘画新思路:国产开源50亿参数新模型,合成可控性、质量实现飞跃
别为ChatGPT高兴太早!背后的RLHF机制还有三个致命缺陷
下一篇
别为ChatGPT高兴太早!背后的RLHF机制还有三个致命缺陷
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3214次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3429次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3458次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4567次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3835次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码