开发者笑疯了! LLaMa惊天泄露引爆ChatGPT平替狂潮,开源LLM领域变天
本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《开发者笑疯了! LLaMa惊天泄露引爆ChatGPT平替狂潮,开源LLM领域变天》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~
谁能想到,一次意外的LLaMA泄漏,竟点燃了开源LLM领域最大的创新火花。
一系列表现出色的ChatGPT开源替代品——「羊驼家族」,随后眼花缭乱地登场。
开源和基于 API 的分发之间的摩擦,是生成式AI生态系统中最迫在眉睫的矛盾之一。
在文本到图像领域,Stable Diffusion的发布清楚地表明,对于基础模型来说,开源是一种可行的分发机制。
然而,在大语言模型领域却并非如此,这个领域最大的突破,比如GPT-4、Claude和Cohere等模型,都只能通过API获得。
这些模型的开源替代品没有表现出相同水平的性能,特别是在遵循人类指令能力上。然而,一场意想不到的泄露,让这种状况彻底发生了改变。
LLaMA的「史诗级」泄漏
几周前,Meta AI推出了大语言模型LLaMA 。
LLaMA 有不同的版本,包括7B、13B、33B和65B的参数,虽然它比GPT-3小,但在许多任务上,它都能和GPT-3的性能相媲美。
LLaMA 起初并未开源,但在发布一周后,这个模型忽然在4chan上泄露了,引发了数千次下载。
这个事件,可以被称为「史诗级泄漏」了,因为它成为了大语言模型领域层出不穷的创新来源。
短短几周内,基于它构建的LLM代理的创新,已经呈爆炸式增长。
Alpaca、Vicuna、Koala、ChatLLaMA 、FreedomGPT、ColossalChat…… 让我们来回顾一下,这场「羊驼家族」的大爆炸,是如何诞生的。
Alpaca在三月中旬,斯坦福发布的大模型Alpaca火了。
Alpaca是由Meta的LLaMA 7B微调而来的全新模型,仅用了52k数据,性能约等于GPT-3.5。
关键是训练成本奇低,不到600美元。
斯坦福研究者对GPT-3.5(text-davinci-003)和Alpaca 7B进行了比较,发现这两个模型的性能非常相似。Alpaca在与GPT-3.5的比较中,获胜次数为90对89。
对于斯坦福的团队来说,想要在预算内训练一个高质量的指令遵循模型,就必须面临2个重要的挑战:要有一个强大的预训练语言模型,以及一个高质量的指令遵循数据。
恰恰,提供给学术研究人员使用的LLaMA模型搞定了第一个问题。
对于第二个挑战,「Self-Instruct: Aligning Language Model with Self Generated Instructions」论文给了很好的启发,即使用现有的强语言模型来自动生成指令数据。
LLaMA模型最大的弱点,就是缺乏指令微调。OpenAI最大的创新之一就是将指令调优用在了GPT-3上。
对此,斯坦福使用了现有的大语言模型,来自动生成遵循指令演示。
现在,Alpaca直接被网友们奉为「文本大模型的Stable Diffusion」。
Vicuna3月底,来自UC伯克利、卡内基梅隆大学、斯坦福大学和加州大学圣地亚哥分校的研究人员开源了Vicuna,这是一个与GPT-4性能相匹配的LLaMA微调版本。
130亿参数的Vicuna,通过在ShareGPT收集的用户共享对话上对LLaMA进行微调训练而来,训练成本近300美元。
结果显示Vicuna-13B在超过90%的情况下,实现了与ChatGPT和Bard相匹敌的能力。
对于Vicuna-13B训练流程,具体如下:
首先,研究人员从ChatGPT对话分享网站ShareGPT上,收集了大约70K对话。
接下来,研究人员优化了Alpaca提供的训练脚本,使模型能够更好地处理多轮对话和长序列。之后利用PyTorch FSDP在8个A100 GPU上进行了一天的训练。
在模型的质量评估方面,研究人员创建了80个不同的问题,并用GPT-4对模型输出进行了评价。
为了比较不同的模型,研究人员将每个模型的输出组合成一个单独的提示,然后让GPT-4评估哪个模型给出的回答更好。
LLaMA、Alpaca、Vicuna和ChatGPT的对比
Koala
最近,UC伯克利 AI Research Institute(BAIR)又发布了一个新模型「考拉」(Koala),相比之前使用OpenAI的GPT数据进行指令微调,Koala的不同之处在于使用网络获取的高质量数据进行训练。
研究结果表明,Koala可以有效地回答各种用户的查询,生成的回答往往比Alpaca更受欢迎,至少在一半的情况下与ChatGPT的效果不相上下。
研究人员希望这次实验的结果可以进一步推动围绕大型闭源模型相对于小型公共模型的相对性能的讨论,特别是结果表明,对于那些能在本地运行的小模型,如果认真地收集训练数据,也可以取得大模型的性能。
事实上,在此之前斯坦福大学发布的Alpaca模型,根据OpenAI的GPT模型对LLaMA的数据进行微调的实验结果已经表明,正确的数据可以显著改善规模更小的开源模型。
这也是伯克利的研究人员开发和发布Koala模型的初衷,希望为这个讨论结果再提供了一个实验证明。
Koala对从网上获取的免费交互数据进行了微调,并且特别关注包括与ChatGPT 等高性能闭源模型交互的数据。
研究人员并没有追求尽可能多的抓取网络数据来最大化数据量,而是专注于收集一个小型的高质量数据集,包括ChatGPT蒸馏数据、开源数据等。
ChatLLaMA
Nebuly开源了ChatLLaMA ,这是一个使用让我们使用自己的数据创建对话助手的框架。
ChatLLaMA让我们使用自己的数据和尽可能少的计算量,来创建超个性化的类似ChatGPT的助手。
假设在未来,我们不再依赖一个「统治所有人」的大型助手,每个人都可以创建自己的个性化版本类ChatGPT助手,它们可以支持人类的各种需求。
不过,创建这种个性化助手需要在许多方面做出努力:数据集创建,使用RLHF进行高效训练,以及推理优化。
这个库的目的是,通过抽象计算优化和收集大量数据所需的工作,让开发人员高枕无忧。
ChatLLaMA旨在帮助开发人员处理各种用例,所有用例都与RLHF训练和优化推理有关。以下是一些用例参考:
- 为垂直特定任务(法律、医疗、游戏、学术研究等)创建类似ChatGPT的个性化助手;
- 想在本地硬件基础设施上使用有限的数据,训练一个高效的类似ChatGPT的助手;
- 想创建自己的个性化版本类ChatGPT助手,同时避免成本失控;
- 想了解哪种模型架构(LLaMA、OPT、GPTJ等)最符合我在硬件、计算预算和性能方面的要求;
- 想让助理与我的个人/公司价值观、文化、品牌和宣言保持一致。
FreedomGPT
FreedomGPT使用Electron 和 React构建,它是一个桌面应用程序,允许用户在他们的本地机器上运行LLaMA。
FreedomGPT的特色,从它的名字上就可见一斑——它回答的问题不受任何审查或安全过滤。
这个程序由AI风险投资公司Age of AI开发。
FreedomGPT 建立在 Alpaca 之上。FreedomGPT使用Alpaca的显著特征,因为与其他模型相比,Alpaca相对更易于访问和定制。
ChatGPT遵循OpenAI的使用政策,限制仇恨、自残、威胁、暴力、性方面的内容。
与ChatGPT不同,FreedomGPT回答问题时没有偏见或偏袒,并且会毫不犹豫地回答有争议或争论性的话题。
FreedomGPT甚至还回答了「如何在家制造炸弹」,而OpenAI专门从GPT-4中删除了这一点。
FreedomGPT很独特,因为它克服了审查限制,在没有任何保障的情况下迎合有争议的话题。它的标志是自由女神像,因为这个独特而大胆的大语言模型象征了自由。
FreedomGPT甚至可以在不需要联网的情况下,就能在计算机上本地运行。
此外,开源版本将很快发布,使用户和组织可以完全定制。
ColossalChat
UC伯克利提出的ColossalChat只需要不到100亿个参数就可以达到中英文双语能力,效果与ChatGPT和GPT-3.5相当。
此外,基于LLaMA模型的ColossalChat,还复刻了完整的RLHF过程,是目前最接近ChatGPT原始技术路线的开源项目。
中英双语训练数据集
ColossalChat发布了一个双语数据集,其中包含大约100,000个中英文问答对。
该数据集是从社交媒体平台上的真实问题场景中收集和清理的,作为种子数据集,使用self-instruct进行扩展,标注成本约为900美元。
与其他self-instruct方法生成的数据集相比,该数据集包含更真实和多样化的种子数据,涵盖更广泛的主题。
该数据集适用于微调和RLHF训练。在提供优质数据的情况下,ColossalChat可以实现更好的对话交互,同时也支持中文。
完整的RLHF管线
RLHF的算法复刻共有三个阶段:
在RLHF-Stage1中,使用上述双语数据集进行监督指令微调以微调模型。
在RLHF-Stage2中,通过对同一提示的不同输出手动排序来训练奖励模型分配相应的分数,然后监督奖励模型的训练。
在RLHF-Stage3中,使用了强化学习算法,这是训练过程中最复杂的部分。
相信很快,就会有更多项目发布。
谁也没想到,这场LLaMA的意外泄露,竟点燃了开源LLM领域最大的创新火花。
文中关于开源,模型的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《开发者笑疯了! LLaMa惊天泄露引爆ChatGPT平替狂潮,开源LLM领域变天》文章吧,也可关注golang学习网公众号了解相关技术文章。

- 上一篇
- 以科技赋能时尚产业,助力福田区打造“湾区时尚总部中心”

- 下一篇
- ChatGPT老板撒钱救难:百万美元帮硅谷银行受害公司,不要借条不用承诺,能还时再还
-
- 科技周边 · 人工智能 | 7小时前 |
- Linux服务器时间校对命令详解及应用
- 420浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 | 量子计算 营收 skywater 第一季度 ThermaView
- SkyWaterQ1营收6130万,强势新平台吸睛
- 293浏览 收藏
-
- 科技周边 · 人工智能 | 9小时前 |
- 问界新M7牧野青发布颜值爆表24.98万起
- 416浏览 收藏
-
- 科技周边 · 人工智能 | 9小时前 |
- 2024财年车企净利润榜:丰田居首,小米排15
- 426浏览 收藏
-
- 科技周边 · 人工智能 | 9小时前 | 开源 国产品牌 5G手机 电子信息制造业 软件及信息技术服务业
- 工信部数据:1-2月5G手机出货4161.9万,国产占85%
- 289浏览 收藏
-
- 科技周边 · 人工智能 | 14小时前 | 面板 lge
- LG东南亚工厂暂停,北美成新重心
- 487浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 23次使用
-
- AI Make Song
- AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
- 33次使用
-
- SongGenerator
- 探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
- 30次使用
-
- BeArt AI换脸
- 探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
- 34次使用
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 36次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览