自动驾驶硬件预埋之后,车企如何实现数据闭环?
来到golang学习网的大家,相信都是编程学习爱好者,希望在这里学习科技周边相关编程知识。下面本篇文章就来带大家聊聊《自动驾驶硬件预埋之后,车企如何实现数据闭环?》,介绍一下,希望对大家的知识积累有所帮助,助力实战开发!
硬件预埋是自动驾驶趋势下车企主机厂采取的新模式,即通过在车内进行硬件预埋,后续汽车只需通过不断地升级软件,用户就可以获得更好的使用体验,同时降低主机厂车型上市时间的压力。硬件预埋与OTA远程升级有着必要性的联系,说完硬件预埋,会再聊聊OTA的原理。
在此之前,我们先把硬件预埋、OTA都摆脱不了的一个话题——车企研发时的数据闭环是如何实现的?
硬件预埋与OTA那点事,出门左拐,可以看到船尾之前梳理的内容。
言归正传,回到本期主题:自动驾驶硬件预埋之后,车企如何实现数据闭环?
只需5步,实现数据闭环
NI提出数据采集/处理5步法,打造数据闭环:
- 道路测试
- 大数据管理
- 场景虚拟化
- 数据开环回灌
- 数据闭环
从数据采集到数据闭环,就5步
一、道路测试——Data Record System AD
道路测试是收集真实场景数据的重要来源,无论是车内通信还是车路通信,都需要处理大批量的数据,自动测试系统中一般需要配备数据采集同步和存储设备。
自动驾驶汽车到底需要哪些类型的传感器?
自动驾驶汽车是集感知、决策和控制等功能于一体的自主交通工具,其中,感知系统代替人类驾驶人的视、听、触等功能,融合摄像机、雷达等传感器采集的海量交通环境数据,精确识别各类交通元素,为自动驾驶汽车决策系统提供支撑。
1、摄像头
摄像头按视频采集方式分为:数字摄像头和模拟摄像头两大类。
车载上一般使用的是数字摄像头,它可以将视频采集设备产生的模拟视频信号转换成数字信号,进而将其储存在计算机里。
模拟摄像头只能将捕捉到的视频信号,经过特定的视频捕捉卡将模拟信号转换成数字模式,并加以压缩后才可以转换到计算机上运用。
举个例子来,我们使用的固定电话就属于模拟信号,它在通话过程中容易产生噪音(电流声或听不清)的情况。而我们的手机为了保持很好的通话质量,就将电话的模拟信号进行了数字化,手机之间的通话质量就非常清晰,同样原理使用数字摄像头能有效减少图像中的噪点和提升成像效果。
一句话概括:模拟视频信号是在一定的时间范围内可以有无限多个不同的取值。而数字视频信号是在模拟信号的基础上经过采样、量化和编码而形成的。模拟信号容易产生信号噪音和干扰,已逐步被数字信号取代。
图片来源:博世官网
2、雷达
雷达能够主动探测周边环境,比视觉传感器受外界环境影响更小,是自动驾驶汽车的重要传感器之一。雷达通过向目标发射电磁波并接收回波,从而获取目标距离、方位、距离变化率等数据。根据电磁波波段,雷达可细分为激光雷达、毫米波雷达和超声波雷达等3类。
NI提供的基于PXI平台的模块化数据采集方案,可以满足多路摄像头、车载以太网、CAN/CANFD、GPS等的数据采集,还能满足不断阶段的数据采集需求。比如,ADAS域控制器已经基本在研发和迭代的阶段,可以通过数据旁通采集的方法,将NI测试设备作为一个中间件,从中间把数据采集回来,这样就不会破坏掉传感器到ECU的数据链路。此外,NI的解决方案支持15TB~200TB的数据存储容量。
为了保证采集数据的准确性,用于记录数据的车辆,需要配备满足其智能驾驶特定等级的传感器和测量技术。主要的传感器类型包括摄像头、毫米波雷达和激光雷达。系统的核心是融合控制器,它获取所有传感器的数据并实时计算当前环境模型,然后用于控制驱动、转向和制动系统。
满足各种传感器、ECU和通信数据记录的高性能数据采集系统需要专门为连续运行而设计,提供高可靠的RAID存储设备,可以测量摄像头、毫米波雷达,激光雷达原始数据,具备测试融合控制器,还包括附加的参考摄像头视频数据以及提供车辆精确位置的惯性导航系统数据和车载以太网、CAN、CANFD、FlexRay等众多总线数据。
二、大数据管理——DIAdem
从流程上说,大数据管理分为车队管理、数据中心、终端数据使用三部分。从车端向数据中心传输数据的过程中,普遍采用的是数据搬移等回传方式,数据量可达到10-100TB/每辆车/每天。反过来,数据中心还能对车端实时监测,这部分主要是通过车载4G 或者5G网络完成。
不同等级阶段的车辆,需要采集的数据量也呈现几何级增长。以目前常见的L3阶段为例,随着4K超高清摄像头、128线激光雷达等传感器引入,每天8小时数据采集系统记录的数据量高达30TB。
采集系统需要提供高带宽、高容量的数据存储,同时还需要考虑如何将数据简便的方式将数据传输到数据中心。比如通过专门的数据上传机将数据传输到容量为PB级别的数据中心。
除了这些基于云的工具之外,这里再强调一个数据挖掘神器——DIAdem。它可以部署在云端,针对路试数据、多源的数据图像、点云的以及一些总线的数据实现相应的数据可视化和数据挖掘的工作。DIAdem可提供200+数据插件,兼容多种类型的测试厂商的数据格式,比如说ASC, MDF4、TTL、MAT 等。
三、场景虚拟化——monoDrive
通过道路试验采集数据之后,就要对数据进行清洗分类、场景选择,最后将真实道路试验和虚拟仿真试验结合在一起。monoDrive就是这样的工具,可以实现高保真的传感器物理建模,场景语义分割,同时还支持云仿真的功能,可以把大量的测试用例,部署到云上面,来加速仿真的进度。monoDrive的另外一个重要优势是realto virtual场景自动生成的扩展功能。
值得一提的是,在场景重建或者是传感器建模的过程中,NI可以把真实的传感器数据跟虚拟的传感器数据做相应的标注。
实车数据转化为仿真场景的工具,基于大量实车数据积累,实现数据驱动的研发模式。
▲ 采集场景转换效果
工具链支持将巨量动态数据和静态数据排列组合,解决了案例设计跟实际情况偏差较大的问题,让自动驾驶的模拟仿真更贴近真实世界。
▲ 语义场景转换工具链
四、数据开环回灌——基于PXI平台的系统架构
这个步骤要做的是把原始数据回灌到ADAS感知软件中,一部分是直接回灌到software stack 去做一些软件回灌,主要是针对一些模型的测试部分。还有一部分是直接回灌到真实的ECU,这可以更真实地复现我们在路试过程中去发现的一些情况。
NI系统架构的组成:用户数据中心、基于Linux 平台的Replay PC、NI PXI 平台
为了形成一个数据闭环,充分利用原始数据的价值,越来越多的车企都在构建这样的一个集群式数据回灌系统。很多车企在定义AEB功能的时候,通常他们会要求AEB 功能是10万公里或者 20万公里不能产生误触发。
举一个例子——
假如在路试的过程中跑了8万公里,突然产生了一次误触发,这个时候就要回去修改相应的软件。修改软件之后,是否还需要再重新跑一个10 万公里呢?显然重头来做会浪费大量的额时间和经历。
面对这样的挑战,有什么有效的方法呢?
王帅解释道:“如果在第一次路试时候跑到8万公里发生了问题,但是能保证前面的里程的数据都被记录下来了。那么一旦发现了问题之后,我们去迭代修改软件。修改软件之后,我们就利用原来采集的原始数据去做一个回归测试,测试一下软件修改之后在原来的这些数据上面能不能正常的运行。这就减少了我们在路试上的投入,从而加快开发速度。”
五、闭环测试——SIL和HIL
闭环测试通常包括软件在环(SIL)和硬件在环(HIL)。在软件在环这块,NI的方案是利用monoDrive平台提供一个可以实现在云上批量部署的环境。在硬件在环这块,NI的方案是利用PXI平台,同时利用NI在摄像头、车载总线,及数据同步等方面的优势实现多种类型传感器的带有数据注入功能的闭环系统。
好了,本文到此结束,带大家了解了《自动驾驶硬件预埋之后,车企如何实现数据闭环?》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

- 上一篇
- 告别捅嗓子?AI手机程序通过声音检测新冠,准确率已达到89%

- 下一篇
- 数据闭环研究:自动驾驶发展从技术驱动转向数据驱动
-
- 科技周边 · 人工智能 | 1小时前 |
- 水军黑小鹏“背刺王”,高管回应:点赞赚钱
- 448浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- macOS上DeepSeek大模型,Ollama与OpenWebUI的绝佳组合
- 420浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- AI Make Song
- AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
- 21次使用
-
- SongGenerator
- 探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
- 18次使用
-
- BeArt AI换脸
- 探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
- 17次使用
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 20次使用
-
- Brev AI
- 探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
- 22次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览