当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > Google探索全新NLU任务「自然语言评估」,正式面试前让AI帮你热个身!

Google探索全新NLU任务「自然语言评估」,正式面试前让AI帮你热个身!

来源:51CTO.COM 2023-05-02 20:33:45 0浏览 收藏

小伙伴们对科技周边编程感兴趣吗?是否正在学习相关知识点?如果是,那么本文《Google探索全新NLU任务「自然语言评估」,正式面试前让AI帮你热个身!》,就很适合你,本篇文章讲解的知识点主要包括。在之后的文章中也会多多分享相关知识点,希望对大家的知识积累有所帮助!

「刷题」可以说是贯穿人生的始终了,有些题目可以独自解决,比如考试题;但诸如面试类需要互动的题目时,一个人就很难刷动了。

这种互动不同于一般的问答,通常需要「陪练方」在特定情境下对问题进行回答,并引导用户进行思考,以达到最终目标。

比如面试官不会只负责提问,还需要引导你说出对问题的理解思路,以及可选的解决方案。这类问题也可能是开放式的,比如自我介绍等。

AI的终极目标,就是一切人可以做的事,都可以由模型替代,这类「面试陪练员」也不例外。

但在当下的自然语言处理领域,这种能力还没有得到足够的重视,并且在技术上很具有挑战性。

最近Google在官方博客上介绍了一个重要的自然语言理解(NLU)能力,即自然语言评估(Natural Language Assessment, NLA),并讨论了如何能够在教育的背景下有所帮助。

图片

典型的 NLU 任务关注用户的意图,而 NLA 允许从多个角度评估答案。

在用户想知道他们的答案有多好的情况下,NLA 可以提供一个关于答案与预期有多接近的分析。

在可能没有「正确」答案的情况下,NLA 可以提供细微的洞察力,包括主题性、相关性、冗长问题等等。

研究人员制定了 NLA 的范围,提出了一个实用的模型来执行主题性NLA,并展示了如何使用 NLA 来帮助求职者练习回答面试问题。

自然语言评估概述

NLA 的目标是根据一组期望(expectations)来评估用户给出的答案。

比如说有一个与学生交互的NLA系统,有以下几个组成部分:

  • 向学生提出一个问题;
  • 期望定义了用户预期在回答中得到什么。例如一个具体的文本回答或者是一组用户期望答案涵盖的主题,并且回答需要简洁。
  • 由学生提供的答案;
  • 评估结果。包括正确性、信息缺失、过于具体或笼统、文体反馈、发音等。
  • 可选项:上下文。例如一本书或一篇文章中的某一段。

使用 NLA,对答案的期望和对答案的评估都可以非常宽泛,这使得师生之间的互动更具表现力且更有细节。

有具体正确答案的问题

即使在有明确的正确答案的情况下,也可以比简单的正确或不正确更细微地评估答案。

  • 上下文(Context):哈利波特与魔法石
  • 问题(Question):霍格沃茨是什么?
  • 期望(Expectation):霍格沃茨是一所魔法学校
  • 回答(Answer):我不是很确定,但我认为这是一所学校。

对于问答系统来说,上面这个回答可能因为缺少关键细节「魔法」而被标记为不正确,因为用户会认为这个答案并非完全正确,也没有太大意义。

NLA可以提供更细节的理解力,例如认定学生的回答太过于笼统,并且学生本人对该回答不够确信。

图片

这种细微的评估,以及注意到学生所表达的不确定性,对于帮助学生在会话环境中建立技能非常重要。

主题预期

在许多情况下,提问者并不期望得到具体答复。

例如,如果一个学生被问到一个观点类问题,并没有具体的文本期望,提问者更关注的是回答相关性以及观点,或许答案的简洁度和流畅性也在提问者的评估范围内。

  • 问题:请进行自我介绍。(Tell me a little about yourself?)
  • 期望:一个主题集合,可能包括「教育 」、「经历」、「兴趣」等
  • 回答:我在加州的萨利纳斯长大,后来去了斯坦福大学,主修经济学,但后来对科技产业感到兴奋,所以接下来我...

在这种情况下,一个有用的评估输出将把用户的答案映射到所涉及的主题的子集,可能还有文本的哪些部分与哪个主题相关的标记。

从自然语言处理的角度来看,这很有挑战性,因为答案可能很长,主题也可能是混合的,而且每个主题本身可能是多方面的。

主题性NLA模型

原则上,主题性NLA(Topicallity NLA)是一个标准的多分类任务,开发者可以根据常用的模型很容易地训练出一个分类器。

但对于NLA来说,可用的训练数据很少,收集每个问题和主题的训练数据成本很高,也很耗时。

谷歌的解决方案是将每个主题分解成可以使用大型语言模型(LLM)进行标识的细粒度组件,并进行简单的通用调优。

研究人员将每个主题映射到一个潜在问题列表,并定义如果句子包含对这些潜在问题之一的答案,那么它就涵盖了该主题。

对于经历(Experience)这个主题,模型可以选择一些潜在的问题,比如:

  • 你在哪里工作?
  • 你是学什么的?
  • ...

再比如兴趣(Interests)这个主题下,也有一些基本问题,如

  • 你对什么感兴趣?
  • 你喜欢做什么?
  • ...

这些基本问题是通过迭代的手工过程设计的。

重要的是,由于这些问题是足够细粒度的,当前的语言模型可以捕获这些句子内的语义(比如What和Where的区别),也使得开发者可以为NLA的主题任务提供一个zero-shot设置: 模型训练一次后,即可不断添加新的问题和新的主题,或通过修改基本内容期望改编现有的主题,而不需要收集主题特定的数据。

图片

帮助求职者准备面试

为了探索NLA的应用场景,谷歌的开发者还与求职者合作开发了一个新工具Interview Warmup,帮助用户在IT Support和用户体验设计等快速增长的就业领域为面试做准备。

网站上提供了大量的问题,求职者自己在家就能练习回答行业专家提出的问题,以帮助在真人面试中变得更加自信和从容。

谷歌也是受求职者的启发,了解面试过程中的难点后提出了NLA研究。

Interview Warmup并不对答案进行评分或判断,它只为用户提供一个独自练习的环境,并且帮助用户进行自我改进。

每当用户回答一个面试问题后,该答案会被NLA模型逐句解析,然后用户可以在不同的谈话要点之间切换,看看在他们的答案中发现了哪些要点。

研究人员意识到,在向用户发出信号表示他们的反馈是「good」时,存在许多潜在的陷阱,尤其是当模型只检测到有限的主题集时。

相反,该系统把控制权掌握在用户手中,只使用机器学习来帮助用户发现如何改进。

图片

到目前为止,该工具已经帮助了大量来自世界各地的求职者,取得了很大的成果,并且开发团队最近已经将其扩展到非洲,并计划继续与求职者合作,迭代并使该工具对数百万正在寻找新工作的人更有帮助。

自然语言评估(NLA)是一个具有技术挑战性和有趣的研究领域。

NLA为新的会话应用铺平了道路,通过从多个角度对答案进行细致入微的评估和分析,促进了学习。

通过与社区合作,从求职者和企业到课堂教师和学生,可以确定NLA有潜力帮助用户进行学习、参与和发展各种学科的技能的情况,以一种负责任的方式建立应用程序,使用户能够评估自己的能力,并找到改进的方法。

参考资料:https://ai.googleblog.com/2022/10/natural-language-assessment-new.html

今天关于《Google探索全新NLU任务「自然语言评估」,正式面试前让AI帮你热个身!》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于任务,NLU的内容请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
AI监控最严格!卡塔尔世界杯部署2.2万电子眼,可准确发现挑事球迷AI监控最严格!卡塔尔世界杯部署2.2万电子眼,可准确发现挑事球迷
上一篇
AI监控最严格!卡塔尔世界杯部署2.2万电子眼,可准确发现挑事球迷
首批因 AI 失业的人已经出现,一游戏公司裁掉半数原画师
下一篇
首批因 AI 失业的人已经出现,一游戏公司裁掉半数原画师
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    6次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    6次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    41次使用
  • MeowTalk喵说:AI猫咪语言翻译,增进人猫情感交流
    MeowTalk喵说
    MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
    36次使用
  • SEO标题Traini:全球首创宠物AI技术,提升宠物健康与行为解读
    Traini
    SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
    35次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码