LangchainChromaDB去重方法解析
哈喽!今天心血来潮给大家带来了《Langchain ChromaDB去重技巧分享》,想必大家应该对文章都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习文章,千万别错过这篇文章~希望能帮助到你!

本文旨在解决在使用 Langchain 和 ChromaDB 构建向量存储时,检索结果出现大量重复文档的问题。通过分析代码和问题原因,本文提供两种解决方案:一是避免重复插入文档到数据库,二是使用 EmbeddingsRedundantFilter 过滤掉冗余的文档,从而确保检索结果的多样性和准确性。
在使用 Langchain 和 ChromaDB 构建向量数据库时,可能会遇到一个常见的问题:检索结果返回大量重复的文档。这通常是由于每次运行代码时,都将相同的文档重复插入到 ChromaDB 数据库中造成的。为了解决这个问题,可以采取以下两种方法。
避免重复插入文档
最直接的解决方案是避免每次运行代码时都重新创建向量数据库。ChromaDB 会将文档存储在磁盘上,因此每次执行 Chroma.from_documents 都会创建一个新的数据库,并将相同的文档再次插入。
以下是一些避免重复插入文档的方法:
只在首次运行时创建数据库: 可以添加一个条件判断,例如检查数据库文件是否存在,如果不存在则创建数据库并插入文档,否则直接加载已存在的数据库。
import os from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings persist_directory = 'db' # 指定数据库存储目录 if not os.path.exists(persist_directory): # 加载文档、分割文本等步骤... # ... vectorstore = Chroma.from_documents(documents=all_splits, embedding=OpenAIEmbeddings(), persist_directory=persist_directory) vectorstore.persist() # 持久化存储 else: vectorstore = Chroma(persist_directory=persist_directory, embedding_function=OpenAIEmbeddings())上述代码首先检查 db 目录是否存在。如果不存在,则执行文档加载、分割和向量化,并将结果存储在 db 目录中。如果 db 目录已经存在,则直接从该目录加载已存在的向量数据库。
注释掉插入数据库的代码: 如果你确定只需要插入一次数据,可以将 Chroma.from_documents 这行代码注释掉,只在首次运行时执行。
# vectorstore = Chroma.from_documents(documents=all_splits, embedding=OpenAIEmbeddings()) # 注释掉这行代码
这种方法简单直接,但需要手动控制数据库的创建和更新。
使用 EmbeddingsRedundantFilter 过滤冗余文档
如果无法避免重复插入文档,或者需要处理数据库中已经存在的重复文档,可以使用 Langchain 提供的 EmbeddingsRedundantFilter 来过滤掉冗余的文档。
EmbeddingsRedundantFilter 通过比较文档的嵌入向量来判断文档是否冗余。它需要先计算所有文档的嵌入向量,然后根据相似度阈值来过滤掉相似度过高的文档。
以下是使用 EmbeddingsRedundantFilter 的示例代码:
from langchain.document_transformers import EmbeddingsRedundantFilter
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.vectorstores import Chroma
# 加载向量数据库
persist_directory = 'db'
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=OpenAIEmbeddings())
# 创建 EmbeddingsRedundantFilter
embeddings = OpenAIEmbeddings()
redundant_filter = EmbeddingsRedundantFilter(embeddings=embeddings)
# 创建检索器
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6})
# 使用 EmbeddingsRedundantFilter 过滤文档
docs = retriever.get_relevant_documents("What is X?")
filtered_docs = redundant_filter.transform_documents(docs)
# 使用过滤后的文档进行问答
qa_chain = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=vectorstore.as_retriever(),
return_source_documents=True
)
result = qa_chain({"query": "What is X?"})
print(result["result"])
print(result["source_documents"])注意事项:
- EmbeddingsRedundantFilter 需要计算所有文档的嵌入向量,因此对于大型数据库来说,可能会比较耗时。
- 可以调整相似度阈值来控制过滤的严格程度。
- 确保 OPENAI_API_KEY 环境变量已正确设置。
总结:
通过避免重复插入文档或使用 EmbeddingsRedundantFilter 过滤冗余文档,可以有效解决 Langchain/ChromaDB 返回重复文档的问题,从而提高检索结果的质量和效率。选择哪种方法取决于具体的应用场景和需求。如果可以控制数据库的创建和更新,建议避免重复插入文档。如果无法避免重复插入,或者需要处理已经存在的重复文档,可以使用 EmbeddingsRedundantFilter。
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。
响应式导航菜单:JS与CSS实现汉堡菜单
- 上一篇
- 响应式导航菜单:JS与CSS实现汉堡菜单
- 下一篇
- Python日志配置方法详解
-
- 文章 · python教程 | 42分钟前 |
- NumPy位异或归约操作全解析
- 259浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python遍历读取所有文件技巧
- 327浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python中index的作用及使用方法
- 358浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python快速访问嵌套字典键值对
- 340浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python中ch代表字符的用法解析
- 365浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- NumPy1D近邻查找:向量化优化技巧
- 391浏览 收藏
-
- 文章 · python教程 | 2小时前 | 正则表达式 字符串操作 re模块 Python文本处理 文本清洗
- Python正则表达式实战教程详解
- 392浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- BehaveFixture临时目录管理技巧
- 105浏览 收藏
-
- 文章 · python教程 | 3小时前 | Python 余数 元组 divmod()函数 商
- divmod函数详解与使用技巧
- 442浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python多进程共享字符串内存技巧
- 291浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3203次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3416次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3446次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4554次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3824次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

