当前位置:首页 > 文章列表 > 文章 > 前端 > 树状数组是什么?lowbit函数详解

树状数组是什么?lowbit函数详解

2025-08-26 23:18:40 0浏览 收藏

从现在开始,努力学习吧!本文《树状数组是什么?lowbit详解》主要讲解了等等相关知识点,我会在golang学习网中持续更新相关的系列文章,欢迎大家关注并积极留言建议。下面就先一起来看一下本篇正文内容吧,希望能帮到你!

树状数组在单点修改和区间求和操作中能大显身手,其核心在于lowbit操作,即x & (-x),该操作利用补码特性精准提取二进制最低位的1,从而实现更新和查询时在O(logN)时间内通过向上或向下跳跃完成操作;相比线段树,树状数组代码简洁、常数小、内存省,但功能较单一,不支持复杂区间操作,而线段树虽功能强、结构直观,但实现复杂、开销大,因此对于点修改与区间求和问题,树状数组是更高效的选择。

树状数组是什么?树状数组的lowbit

树状数组,或者叫 Fenwick Tree,它本质上是一种数据结构,能让我们在对数组进行单点修改和区间求和这两种操作时,都能达到对数时间复杂度(O(logN))。相比于传统的前缀和数组(修改是O(N),查询是O(1))或者朴素数组(修改是O(1),查询是O(N)),它在两者之间找到了一个绝妙的平衡点。它最核心的秘密,在于一个叫做 lowbit 的位运算操作,正是这个操作,让树状数组能够以一种巧妙的方式管理数据,实现高效的更新和查询。

解决方案

树状数组的设计哲学在于,它并不直接存储每个位置的值,而是存储一系列“区间和”。这些区间是根据二进制位来划分的。具体来说,每个节点 C[i] 存储的是从 i - lowbit(i) + 1i 这个区间的和。lowbit(i) 运算,其结果是 i 的二进制表示中最低位的1所代表的数值。例如,lowbit(8)8 (1000b),lowbit(6)2 (0110b)。正是这个 lowbit 操作,决定了每个节点负责的区间大小,以及在更新和查询时如何向上或向下跳跃。

当我们需要更新某个位置 idx 的值时,我们实际上是更新所有包含 idx 的区间。这通过不断地将 idx 加上 lowbit(idx) 来实现,直到超出数组范围。这个过程模拟了从一个叶子节点向上遍历到根节点,更新所有祖先节点的过程。同样,当我们需要查询从1到 idx 的前缀和时,我们不断地将 idx 减去 lowbit(idx),并将当前节点的值累加起来。这就像从一个节点向下遍历,累加所有必要的区间和。

// 树状数组的基本结构
int N; // 数组大小
vector<int> tree; // 树状数组本体

// 初始化
void init(int size) {
    N = size;
    tree.assign(N + 1, 0); // 1-based indexing
}

// lowbit 操作:返回x的二进制表示中最低位的1所代表的数值
// 例如:lowbit(8) = 8 (1000b), lowbit(6) = 2 (0110b)
int lowbit(int x) {
    return x & (-x);
}

// 单点更新:将位置idx的值增加delta
void update(int idx, int delta) {
    while (idx <= N) {
        tree[idx] += delta;
        idx += lowbit(idx); // 向上跳跃,更新所有包含idx的区间
    }
}

// 前缀和查询:查询从1到idx的区间和
int query(int idx) {
    int sum = 0;
    while (idx > 0) {
        sum += tree[idx];
        idx -= lowbit(idx); // 向下跳跃,累加必要的区间和
    }
    return sum;
}

树状数组在哪些场景下能大显身手?

说起树状数组的用武之地,它最擅长的就是那些既有单点修改又有区间查询需求的场景。比如,你想统计一个动态变化的数列中,某个范围内有多少个数字小于某个值,或者计算逆序对的数量。传统的做法可能要么修改快查询慢,要么查询快修改慢,而树状数组则能把两者都优化到对数时间复杂度。这在处理大规模数据,且操作频繁的竞赛编程和实际应用中,效率优势就非常明显了。它不像线段树那样结构复杂,实现起来相对简洁,代码量也小,但功能上对于点修改和区间求和这类问题,效率几乎不逊色。可以说,它是一种低调而强大的工具。

lowbit 操作的数学原理与位运算精髓是什么?

lowbit(x) 的核心在于 x & (-x) 这个位运算表达式。要理解它,我们得稍微回顾一下计算机中负数的表示——补码。一个正数 x 的补码就是它本身。而一个负数 -x 的补码,是其对应正数 x 的所有位取反(反码)后加1。

举个例子: 假设 x = 6 (二进制 0000 0110)

  1. x 的二进制表示:0000 0110
  2. ~x (按位取反):1111 1001
  3. ~x + 1 (补码,即 -6 的补码):1111 1010

现在,我们看 x & (-x)x : 0000 0110-x : 1111 1010x & (-x): 0000 0010 (结果是 2,正好是 6 的二进制表示中最低位的1所代表的数值)

这个结果的巧妙之处在于,x 的补码 -x 在最低位的1之前的所有位,都与 x 刚好相反。而最低位的1以及它后面的所有0,则与 x 保持一致。当 x-x 进行按位与操作时,除了 x 最低位的那个1之外,其他所有位都会因为 x-x 在该位上是 01 或者 10 而变为 0。最终,只剩下最低位的那个1被保留下来。这个特性使得 lowbit 能够高效地提取出这个关键的位信息,从而指导树状数组的向上和向下跳跃逻辑。

树状数组与线段树相比,各自的优劣势体现在哪里?

树状数组和线段树都是处理区间问题的强大数据结构,但它们各有侧重,用起来感觉也挺不一样。

树状数组的优势:

  1. 实现简单,代码量小: 树状数组的实现确实比线段树简洁得多,尤其是 lowbit 这个操作,精炼又高效。这对于竞赛编程来说,意味着更少的调试时间和出错概率。
  2. 常数因子小: 虽然都是 O(logN) 的复杂度,但树状数组的实际运行速度通常会比线段树快一些,因为它没有递归调用的开销,且内存访问模式更连续。
  3. 内存占用小: 通常只需要一个与原数组大小相近的额外数组,即 N+1 的空间,而线段树通常需要 4N 左右的空间。

树状数组的劣势:

  1. 功能相对单一: 树状数组最擅长的是单点修改和区间求和(或者其他满足结合律的操作,比如求区间最大值、最小值,但实现会复杂些)。对于更复杂的区间操作,比如区间修改、区间查询,或者涉及到区间乘法、区间开方等非加性操作时,树状数组就显得力不从心了,或者需要非常巧妙的变形才能实现。
  2. 不直观: 它的内部结构不像线段树那样是显式的二叉树,理解起来可能需要一点点位运算的抽象思维。初学者可能会觉得有点绕。

线段树的优势:

  1. 功能强大,通用性强: 线段树能够支持各种复杂的区间操作,包括区间修改、区间查询(求和、最大值、最小值、异或和等)、懒惰标记(lazy propagation)等。它的结构更通用,可以灵活定义节点存储的信息和合并规则。
  2. 结构直观: 它就是一棵二叉树,每个节点代表一个区间,左右子节点代表左右子区间,这种分治思想更容易理解和可视化。

线段树的劣势:

  1. 实现复杂,代码量大: 递归实现、懒惰标记等机制使得线段树的代码量和实现难度都比树状数组高不少,调试起来也更费劲。
  2. 常数因子大,内存占用大: 递归开销和通常 4N 的空间需求,意味着在相同 O(logN) 复杂度下,线段树的实际运行时间可能更长,内存消耗也更大。

总的来说,如果你的问题仅仅是单点修改和区间求和,那么树状数组无疑是更优的选择,因为它高效且简洁。但如果问题涉及到更复杂的区间操作,或者需要高度定制化的区间信息维护,线段树的通用性和强大功能就显得不可替代了。它们就像是工具箱里的两把不同型号的锤子,各有各的用处。

文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《树状数组是什么?lowbit函数详解》文章吧,也可关注golang学习网公众号了解相关技术文章。

PPT渐变边框手绘效果设置方法PPT渐变边框手绘效果设置方法
上一篇
PPT渐变边框手绘效果设置方法
即梦AI制作电子相册步骤详解
下一篇
即梦AI制作电子相册步骤详解
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    364次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    363次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    352次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    359次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    380次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码