当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > Meta「分割一切」超进化版来了!IDEA领衔国内顶尖团队打造:检测、分割、生成一切,狂揽2k星

Meta「分割一切」超进化版来了!IDEA领衔国内顶尖团队打造:检测、分割、生成一切,狂揽2k星

来源:51CTO.COM 2023-04-29 11:54:05 0浏览 收藏

本篇文章给大家分享《Meta「分割一切」超进化版来了!IDEA领衔国内顶尖团队打造:检测、分割、生成一切,狂揽2k星》,覆盖了科技周边的常见基础知识,其实一个语言的全部知识点一篇文章是不可能说完的,但希望通过这些问题,让读者对自己的掌握程度有一定的认识(B 数),从而弥补自己的不足,更好的掌握它。

Meta的「分割一切」模型横空出世后,已经让圈内人惊呼CV不存在了。

就在SAM发布后一天,国内团队在此基础上搞出了一个进化版本「Grounded-SAM」。

图片

注:项目的logo是团队用Midjourney花了一个小时做的

Grounded-SAM把SAM和BLIP、Stable Diffusion集成在一起,将图片「分割」、「检测」和「生成」三种能力合一,成为最强Zero-Shot视觉应用。

网友纷纷表示,太卷了!

图片

谷歌大脑的研究科学家、滑铁卢大学计算机科学助理教授Wenhu Chen表示「这也太快了」。

图片

AI大佬沈向洋也向大家推荐了这一最新项目:

Grounded-Segment-Anything:自动检测、分割和生成任何有图像和文本输入的东西。边缘分割可以进一步改进。

图片

截至目前,这个项目在GitHub上已经狂揽2k星。

图片

检测一切,分割一切,生成一切

上周,SAM的发布让CV迎来了GPT-3时刻。甚至,Meta AI声称这是史上首个图像分割基础模型。

该模型可以在统一的框架prompt encoder内,指定一个点、一个边界框、一句话,直接一键分割出任何物体。

图片

SAM具有广泛的通用性,即具有了零样本迁移的能力,足以涵盖各种用例,不需要额外训练,就可以开箱即用地用于新的图像领域,无论是水下照片,还是细胞显微镜。

图片

由此可见,SAM可以说是强到发指。

而现在,国内研究者基于这个模型想到了新的点子,将强大的零样本目标检测器Grounding DINO与之结合,便能通过文本输入,检测和分割一切。

借助Grounding DINO强大的零样本检测能力,Grounded SAM可以通过文本描述就可以找到图片中的任意物体,然后通过SAM强大的分割能力,细粒度的分割出mas。

最后,还可以利用Stable Diffusion对分割出来的区域做可控的文图生成。

图片

再Grounded-SAM具体实践中,研究者将Segment-Anything与3个强大的零样本模型相结合,构建了一个自动标注系统的流程,并展示出非常非常令人印象深刻的结果!

这一项目结合了以下模型:

· BLIP:强大的图像标注模型

· Grounding DINO:最先进的零样本检测器

· Segment-Anything:强大的零样本分割模型

· Stable-Diffusion:出色的生成模型

所有的模型既可以组合使用,也可以独立使用。组建出强大的视觉工作流模型。整个工作流拥有了检测一切,分割一切,生成一切的能力。

该系统的功能包括:

BLIP+Grounded-SAM=自动标注器

使用BLIP模型生成标题,提取标签,并使用Ground-SAM生成框和掩码:

· 半自动标注系统:检测输入的文本,并提供精确的框标注和掩码标注。

图片

· 全自动标注系统:

首先使用BLIP模型为输入图像生成可靠的标注,然后让Grounding DINO检测标注中的实体,接着使用SAM在其框提示上进行实例分割。

图片

Stable Diffusion+Grounded-SAM=数据工厂

· 用作数据工厂生成新数据:可以使用扩散修复模型根据掩码生成新数据。​

图片

Segment Anything+HumanEditing

在这个分支中,作者使用Segment Anything来编辑人的头发/面部。

· SAM+头发编辑

图片

· SAM+时尚编辑

图片

作者对于Grounded-SAM模型提出了一些未来可能的研究方向:

自动生成图像以构建新的数据集;分割预训练的更强大的基础模型;与(Chat-)GPT模型的合作;一个完整的管道,用于自动标注图像(包括边界框和掩码),并生成新图像。

作者介绍

Grounded-SAM项目其中的一位研究者是清华大学计算机系的三年级博士生刘世隆。

他近日在GitHub上介绍了自己和团队一起做出的最新项目,并称目前还在完善中。

图片

现在,刘世隆是粤港澳大湾区数字经济研究院(IDEA研究院),计算机视觉与机器人研究中心的实习生,由张磊教授指导,主要研究方向为目标检测,多模态学习。

在此之前,他于2020年获得了清华大学工业工程系的学士学位,并于2019年在旷视实习过一段时间。

个人主页:​http://www.lsl.zone/​

顺便提一句,刘世隆也是今年3月份发布的目标检测模型Grounding DINO的一作。

此外,他的4篇论文中了CVPR 2023,2篇论文被ICLR 2023接收,1篇论文被AAAI 2023接收。

图片

论文地址:https://arxiv.org/pdf/2303.05499.pdf

而刘世隆提到的那位大佬——任天和,目前在IDEA研究院担任计算机视觉算法工程师,也由张磊教授指导,主要研究方向为目标检测和多模态。

图片

此外,项目的合作者还有,中国科学院大学博士三年级学生黎昆昌,主要研究方向为视频理解和多模态学习;IDEA研究院计算机视觉与机器人研究中心实习生曹赫,主要研究方向为生成模型;以及阿里云高级算法工程师陈佳禹。

图片

任天和、刘世隆 

安装运行 

项目需要安装python 3.8及以上版本,pytorch 1.7及以上版本和torchvision 0.8及以上版本。此外,作者强烈建议安装支持CUDA的PyTorch和TorchVision。

安装Segment Anything:

python -m pip install -e segment_anything

安装GroundingDINO:

python -m pip install -e GroundingDINO

安装diffusers:

pip install --upgrade diffusers[torch]

安装掩码后处理、以COCO格式保存掩码、example notebook和以ONNX格式导出模型所需的可选依赖。同时,项目还需要jupyter来运行example notebook。

pip install opencv-python pycocotools matplotlib onnxruntime onnx ipykernel

Grounding DINO演示

下载groundingdino检查点:

cd Grounded-Segment-Anything
wget https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth

运行demo:

export CUDA_VISIBLE_DEVICES=0
python grounding_dino_demo.py 
--config GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py 
--grounded_checkpoint groundingdino_swint_ogc.pth 
--input_image assets/demo1.jpg 
--output_dir "outputs" 
--box_threshold 0.3 
--text_threshold 0.25 
--text_prompt "bear" 
--device "cuda"

模型预测可视化将保存在output_dir中,如下所示:

图片

Grounded-Segment-Anything+BLIP演示

自动生成伪标签很简单:

1. 使用BLIP(或其他标注模型)来生成一个标注。

2. 从标注中提取标签,并使用ChatGPT来处理潜在的复杂句子。

3. 使用Grounded-Segment-Anything来生成框和掩码。

export CUDA_VISIBLE_DEVICES=0
python automatic_label_demo.py 
--config GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py 
--grounded_checkpoint groundingdino_swint_ogc.pth 
--sam_checkpoint sam_vit_h_4b8939.pth 
--input_image assets/demo3.jpg 
--output_dir "outputs" 
--openai_key your_openai_key 
--box_threshold 0.25 
--text_threshold 0.2 
--iou_threshold 0.5 
--device "cuda"

伪标签和模型预测可视化将保存在output_dir中,如下所示:

图片

Grounded-Segment-Anything+Inpainting演示

CUDA_VISIBLE_DEVICES=0
python grounded_sam_inpainting_demo.py 
--config GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py 
--grounded_checkpoint groundingdino_swint_ogc.pth 
--sam_checkpoint sam_vit_h_4b8939.pth 
--input_image assets/inpaint_demo.jpg 
--output_dir "outputs" 
--box_threshold 0.3 
--text_threshold 0.25 
--det_prompt "bench" 
--inpaint_prompt "A sofa, high quality, detailed" 
--device "cuda"

Grounded-Segment-Anything+Inpainting Gradio APP

python gradio_app.py

作者在此提供了可视化网页,可以更方便的尝试各种例子。

图片


网友评论

对于这个项目logo,还有个深层的含义:

一只坐在地上的马赛克风格的熊。坐在地面上是因为ground有地面的含义,然后分割后的图片可以认为是一种马赛克风格,而且马塞克谐音mask,之所以用熊作为logo主体,是因为作者主要示例的图片是熊。

图片

看到Grounded-SAM后,网友表示,知道要来,但没想到来的这么快。

图片

项目作者任天和称,「我们用的Zero-Shot检测器是目前来说最好的。」

图片

未来,还会有web demo上线。

图片

最后,作者表示,这个项目未来还可以基于生成模型做更多的拓展应用,例如多领域精细化编辑、高质量可信的数据工厂的构建等等。欢迎各个领域的人多多参与。

今天关于《Meta「分割一切」超进化版来了!IDEA领衔国内顶尖团队打造:检测、分割、生成一切,狂揽2k星》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于模型,样本的内容请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
对话清华黄民烈:借用自动驾驶分级定义AI对话系统,元宇宙虚拟伴侣或位于L5对话清华黄民烈:借用自动驾驶分级定义AI对话系统,元宇宙虚拟伴侣或位于L5
上一篇
对话清华黄民烈:借用自动驾驶分级定义AI对话系统,元宇宙虚拟伴侣或位于L5
哈利波特AI时装秀转疯了,魔性台词看呆网友,400万+播放马斯克围观
下一篇
哈利波特AI时装秀转疯了,魔性台词看呆网友,400万+播放马斯克围观
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    13次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    14次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    27次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    26次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    53次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码