大脑里也有个Transformer!和「海马体」机制相同
IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天golang学习网给大家整理了《大脑里也有个Transformer!和「海马体」机制相同》,聊聊,我们一起来看看吧!
我不能创造的,我也不理解 ——费曼
想要创造人工智能,首先要理解人类的大脑因何有智能。
随着神经网络的诞生及后续的辉煌发展,研究者们一直在为神经网络寻找生物学上的解释,生物学上的进展也在启发AI研究人员开发新模型。
但人工智能领域的研究人员其实还有一个更远大的追求:利用AI模型来帮助理解大脑。
最近有研究发现,虽然时下最流行的Transformer模型是在完全没有生物学知识辅助的情况下开发出来的,但其架构却和人脑海马结构极其相似。
论文链接:https://arxiv.org/pdf/2112.04035.pdf
研究人员给Transformer配备了递归位置编码后,发现模型可以精确复制海马结构(hippocampal formation)的空间表征。
不过作者也表示,对于这一结果并不惊讶,因为Transformer与目前神经科学中的海马体模型密切相关,最明显的就是位置细胞(place cell)和网格细胞(grid cell)。
而且通过实验发现,Transformer模型相比神经科学版本提供的模型来说有巨大的性能提升。
这项工作将人工神经网络和大脑网络的计算结合起来,对海马体和大脑皮层之间的相互作用提供了新的理解,并暗示了皮层区域如何执行超出目前神经科学模型的更广泛的复杂任务,如语言理解。
Transformer仿真海马体?
人类想要了解自己的大脑仍然困难重重,比如研究大脑如何组织和访问空间信息来解决「我们在哪里,拐角处有什么以及如何到达那里」仍然是一项艰巨的挑战。
整个过程可能涉及到从数百亿个神经元中调用整个记忆网络和存储的空间数据,每个神经元都连接到数千个其他神经元。
虽然神经科学家已经确定了几个关键元素,例如网格细胞、映射位置的神经元,但如何进行更深入的研究仍然是未知的:研究人员无法移除和研究人类灰质切片来观察基于位置的图像、声音和气味记忆如何流动并相互连接。
人工智能模型则提供了另一种途径来理解人脑,多年来,神经科学家已经利用多种类型的神经网络来模拟大脑中神经元的发射。
最近有研究表明,海马体(一个对记忆至关重要的大脑结构)基本上和Transformer模型差不多。
研究人员用新模型以一种与大脑内部运作相似的方式追踪空间信息,取得了一些显著的研究成果。
来自牛津大学和斯坦福大学的认知神经科学家James Whittington表示,当我们知道这些大脑模型等同于Transformer时,也就意味着新模型会表现得更好,也更容易训练。
从Whittington和其他人的研究成果中可以看出,Transformer可以极大地提高神经网络模型模仿网格细胞和大脑其他部分进行的各种计算的能力。
Whittington表示,这样的模型可以推动我们对人工神经网络如何工作的理解,甚至更有可能是对大脑中如何进行计算的理解。
主要从事Transformer模型研究的谷歌大脑计算机科学家David Ha表示,我们并不是要重新创造一个新的大脑,但我们能不能创造一种机制来做大脑可以做的事情?
Transformer在五年前才首次提出,当时是作为人工智能处理自然语言的一种新模型,也是BERT和GPT-3等那些「明星模型」的秘密武器。这些模型可以生成令人信服的歌词,创作莎士比亚十四行诗,或者做一些人工客服的工作。
Transformer的核心机制就是自注意力,其中每个输入(例如一个单词、一个像素、一个序列中的数字)总是与其他的所有输入相连,而其他常见的神经网络只是将输入与某些输入相连接。
虽然Transformer是专门为自然语言任务而设计的,但后来的研究也证明了Transformer在其他任务中也同样表现出色,比如对图像进行分类,以及现在对大脑进行建模。
2020年,由奥地利约翰开普勒林茨大学的计算机科学家Sepp Hochreiter(LSTM论文一作)领导的一个小组,使用一个Transformer来重新调整一个强大的、长期存在的记忆检索模型Hopfield网络。
这些网络在40年前由普林斯顿物理学家John Hopfield首次提出,遵循一个一般规则:在同一时间活跃的神经元相互之间建立了强有力的联系。
Hochreiter和他的合作者注意到,研究人员一直在寻找更好的记忆检索模型,他们看到了一类新的Hopfield网络如何检索记忆和Transformer如何执行注意力之间的联系。
这些新的Hopfield网络由Hopfield和麻省理工学院-IBM沃森人工智能实验室的Dmitry Krotov开发,与标准的Hopfield网络相比,具有更有效的连接,可以存储和检索更多记忆。
论文链接:https://papers.nips.cc/paper/2016/hash/eaae339c4d89fc102edd9dbdb6a28915-Abstract.html
Hochreiter的团队通过添加一个类似Transformer中的注意力机制的规则来升级这些网络。
2022年,这篇新论文的进一步调整了Hochreiter的方法,修改了Transformer,使其不再将记忆视为线性序列,而是像句子中的一串单词,将其编码为高维空间中的坐标。
研究人员称这种「扭曲」进一步提高了该模型在神经科学任务中的表现。实验结果还表明,该模型在数学上等同于神经科学家在fMRI扫描中看到的网格细胞发射模式的模型。
伦敦大学学院的神经科学家Caswell Barry表示,网格细胞具有这种令人兴奋的、美丽的、有规律的结构,并且具有引人注目的模式,不太可能随机出现。
这项新工作显示了Transformer如何准确地复制了在海马体中观察到的那些模式。
他们也认识到,Transformer模型可以根据以前的状态和它的移动方式弄清楚它在哪里,而且是以一种关键的方式进入传统的网格细胞模型。
近期的一些其他工作也表明,Transformer可以促进我们对其他大脑功能的理解。
去年,麻省理工学院的计算神经科学家Martin Schrimpf分析了43种不同的神经网络模型,以了解它们对由fMRI和皮质电图报告的人类神经活动测量结果的预测程度。
他发现Transformer是目前领先的、最先进的神经网络,几乎可以预测成像中发现的所有变化。
而David Ha与同为计算机科学家的Yujin Tang最近也设计了一个模型,可以故意给Transformer以随机、无序的方式输入大量数据,模仿人体如何向大脑传输感官观察。结果发现Transformer可以像我们的大脑一样,可以成功地处理无序的信息流。
论文链接:https://arxiv.org/abs/2111.14377
Yujin Tang表示,神经网络是硬接线,只能接收特定的输入。但在现实生活中,数据集经常快速变化,而大多数人工智能没有任何办法调整。未来我们想尝试一种能够快速适应的架构。
文中关于模型,Transforme的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《大脑里也有个Transformer!和「海马体」机制相同》文章吧,也可关注golang学习网公众号了解相关技术文章。

- 上一篇
- 首个中文Stable Diffusion模型开源,IDEA研究院封神榜团队开启中文AI艺术时代

- 下一篇
- 研究表明大型语言模型在逻辑推理方面存在问题
-
- 勤劳的白猫
- 很好,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,帮助很大,总算是懂了,感谢作者大大分享技术贴!
- 2023-06-01 20:39:37
-
- 聪明的时光
- 很详细,已加入收藏夹了,感谢大佬的这篇技术文章,我会继续支持!
- 2023-05-28 13:15:14
-
- 疯狂的树叶
- 这篇博文出现的刚刚好,楼主加油!
- 2023-05-24 07:44:47
-
- 坚强的冬日
- 这篇技术贴太及时了,太详细了,很好,码起来,关注博主了!希望博主能多写科技周边相关的文章。
- 2023-05-09 06:08:40
-
- 科技周边 · 人工智能 | 4小时前 |
- Colab运行AI绘画模型教程详解
- 310浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- AI工具怎么选?主流工具对比与适用场景分析
- 162浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- 豆包AI运动分析,科学提升训练效果
- 288浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 通灵义码技巧与常见问题解决
- 393浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- AI家居设计工具搭配豆包使用教程
- 198浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- ChatGPT插件冲突解决全攻略
- 492浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- AI牌类教学工具+豆包,轻松提升牌技
- 317浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 豆包AI设计模式示例编写方法解析
- 255浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 用豆包AI优化Webpack的完整教程
- 248浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 509次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 边界AI平台
- 探索AI边界平台,领先的智能AI对话、写作与画图生成工具。高效便捷,满足多样化需求。立即体验!
- 41次使用
-
- 免费AI认证证书
- 科大讯飞AI大学堂推出免费大模型工程师认证,助力您掌握AI技能,提升职场竞争力。体系化学习,实战项目,权威认证,助您成为企业级大模型应用人才。
- 67次使用
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 186次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 267次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 206次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览