阿里二面:RocketMQ 消费者拉取一批消息,其中部分消费失败了,偏移量怎样更新?
最近发现不少小伙伴都对科技周边很感兴趣,所以今天继续给大家介绍科技周边相关的知识,本文《阿里二面:RocketMQ 消费者拉取一批消息,其中部分消费失败了,偏移量怎样更新?》主要内容涉及到等等知识点,希望能帮到你!当然如果阅读本文时存在不同想法,可以在评论中表达,但是请勿使用过激的措辞~
大家好,我是君哥。
最近有读者参加面试时被问了一个问题,如果消费者拉取了一批消息,比如 100 条,第 100 条消息消费成功了,但是第 50 条消费失败,偏移量会怎样更新?就着这个问题,今天来聊一下,如果一批消息有消费失败的情况时,偏移量怎么保存。
1 拉取消息
1.1 封装拉取请求
以 RocketMQ 推模式为例,RocketMQ 消费者启动代码如下:
public static void main(String[] args) throws InterruptedException, MQClientException { DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("CID_JODIE_1"); consumer.subscribe("TopicTest", "*"); consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET); consumer.setConsumeTimestamp("20181109221800"); consumer.registerMessageListener(new MessageListenerConcurrently() { @Override public ConsumeConcurrentlyStatus consumeMessage(List<messageext> msgs, ConsumeConcurrentlyContext context){ try{ System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msgs); }catch (Exception e){ return ConsumeConcurrentlyStatus.RECONSUME_LATER; } return ConsumeConcurrentlyStatus.CONSUME_SUCCESS; } }); consumer.start(); }</messageext>
上面的 DefaultMQPushConsumer 是一个推模式的消费者,启动方法是 start。消费者启动后会触发重平衡线程(RebalanceService),这个线程的任务是在死循环中不停地进行重平衡,最终封装拉取消息的请求到 pullRequestQueue。这个过程涉及到的 UML 类图如下:
1.2 处理拉取请求
封装好拉取消息的请求 PullRequest 后,RocketMQ 就会不停地从 pullRequestQueue 获取消息拉取请求进行处理。UML 类图如下:
拉取消息的入口方法是一个死循环,代码如下:
//PullMessageService public void run(){ log.info(this.getServiceName() + " service started"); while (!this.isStopped()) { try { PullRequest pullRequest = this.pullRequestQueue.take(); this.pullMessage(pullRequest); } catch (InterruptedException ignored) { } catch (Exception e) { log.error("Pull Message Service Run Method exception", e); } } log.info(this.getServiceName() + " service end"); }
这里拉取到消息后,提交给 PullCallback 这个回调函数进行处理。
拉取到的消息首先被 put 到 ProcessQueue 中的 msgTreeMap 上,然后被封装到 ConsumeRequest 这个线程类来处理。把代码精简后,ConsumeRequest 处理逻辑如下:
//ConsumeMessageConcurrentlyService.java public void run(){ MessageListenerConcurrently listener = ConsumeMessageConcurrentlyService.this.messageListener; ConsumeConcurrentlyContext context = new ConsumeConcurrentlyContext(messageQueue); ConsumeConcurrentlyStatus status = null; try { //1.执行消费逻辑,这里的逻辑是在文章开头的代码中定义的 status = listener.consumeMessage(Collections.unmodifiableList(msgs), context); } catch (Throwable e) { } if (!processQueue.isDropped()) { //2.处理消费结果 ConsumeMessageConcurrentlyService.this.processConsumeResult(status, context, this); } else { log.warn("processQueue is dropped without process consume result. messageQueue={}, msgs={}", messageQueue, msgs); } }
2 处理消费结果
2.1 并发消息
并发消息处理消费结果的代码做精简后如下:
//ConsumeMessageConcurrentlyService.java public void processConsumeResult( final ConsumeConcurrentlyStatus status, final ConsumeConcurrentlyContext context, final ConsumeRequest consumeRequest ){ int ackIndex = context.getAckIndex(); switch (status) { case CONSUME_SUCCESS: if (ackIndex >= consumeRequest.getMsgs().size()) { ackIndex = consumeRequest.getMsgs().size() - 1; } int ok = ackIndex + 1; int failed = consumeRequest.getMsgs().size() - ok; break; case RECONSUME_LATER: break; default: break; } switch (this.defaultMQPushConsumer.getMessageModel()) { case BROADCASTING: for (int i = ackIndex + 1; i msgBackFailed = new ArrayList<messageext>(consumeRequest.getMsgs().size()); for (int i = ackIndex + 1; i = 0 && !consumeRequest.getProcessQueue().isDropped()) { this.defaultMQPushConsumerImpl.getOffsetStore().updateOffset(consumeRequest.getMessageQueue(), offset, true); } }</messageext>
从上面的代码可以看出,如果处理消息的逻辑是串行的,比如文章开头的代码使用 for 循环来处理消息,那如果在某一条消息处理失败了,直接退出循环,给 ConsumeConcurrentlyContext 的 ackIndex 变量赋值为消息列表中失败消息的位置,这样这条失败消息后面的消息就不再处理了,发送给 Broker 等待重新拉取。代码如下:
public static void main(String[] args) throws InterruptedException, MQClientException { DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("CID_JODIE_1"); consumer.subscribe("TopicTest", "*"); consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET); consumer.setConsumeTimestamp("20181109221800"); consumer.registerMessageListener(new MessageListenerConcurrently() { @Override public ConsumeConcurrentlyStatus consumeMessage(List<messageext> msgs, ConsumeConcurrentlyContext context){ for (int i = 0; i <p style="line-height: 2;">消费成功的消息则从 ProcessQueue 中的 msgTreeMap 中移除,并且返回 msgTreeMap 中最小的偏移量(firstKey)去更新。注意:集群模式偏移量保存在 Broker 端,更新偏移量需要发送消息到 Broker,而广播模式偏移量保存在 Consumer 端,只需要更新本地偏移量就可以。</p><p style="line-height: 2;">如果处理消息的逻辑是并行的,处理消息失败后给 ackIndex 赋值是没有意义的,因为可能有多条消息失败,给 ackIndex 变量赋值并不准确。最好的方法就是给 ackIndex 赋值 0,整批消息全部重新消费,这样又可能带来冥等问题。</p><h3>2.2 顺序消息</h3><p style="line-height: 2;">对于顺序消息,从 msgTreeMap 取出消息后,先要放到 consumingMsgOrderlyTreeMap 上面,更新偏移量时,是从 consumingMsgOrderlyTreeMap 上取最大的消息偏移量(lastKey)。</p><h2>3 总结</h2><p style="line-height: 2;">回到开头的问题,如果一批消息按照顺序消费,是不可能出现第 100 条消息消费成功了,但第 50 条消费失败的情况,因为第 50 条消息失败的时候,应该退出循环,不再继续进行消费。</p><p style="line-height: 2;">如果是并发消费,如果出现了这种情况,建议是整批消息全部重新消费,也就是给 ackIndex 赋值 0,这样必须考虑冥等问题。</p> <p>到这里,我们也就讲完了《阿里二面:RocketMQ 消费者拉取一批消息,其中部分消费失败了,偏移量怎样更新?》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于RocketMQ,消费者,Consumer的知识点!</p></messageext>

- 上一篇
- 智能网联汽车线控底盘技术深度解析

- 下一篇
- 模拟大脑功能,这个AI模型真正实现像人一样持续学习
-
- 科技周边 · 人工智能 | 12分钟前 |
- 上班族AI工具夜校学习指南与课程推荐
- 432浏览 收藏
-
- 科技周边 · 人工智能 | 29分钟前 |
- Deepseek联手Pictory,一键生成宣传片
- 362浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 苹果DeepSeek安装指南及步骤详解
- 368浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- AI剪辑怎么用?新手教程+案例解析
- 331浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 零基础AI剪辑教程,新手也能轻松上手
- 220浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- AI乐器工具搭配豆包,轻松学演奏技巧
- 130浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- DeepSeek写课脚本的5步技巧
- 251浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 即梦AI模板特效使用攻略
- 356浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 224次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 221次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 219次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 224次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 244次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览