强化学习再登Nature封面,自动驾驶安全验证新范式大幅减少测试里程
来到golang学习网的大家,相信都是编程学习爱好者,希望在这里学习科技周边相关编程知识。下面本篇文章就来带大家聊聊《强化学习再登Nature封面,自动驾驶安全验证新范式大幅减少测试里程》,介绍一下,希望对大家的知识积累有所帮助,助力实战开发!
自动驾驶汽车 (AV) 技术的快速发展,使得我们正处于交通革命的风口浪尖,其规模是自一个世纪前汽车问世以来从未见过的。自动驾驶技术具有显着提高交通安全性、机动性和可持续性的潜力,因此引起了工业界、政府机构、专业组织和学术机构的共同关注。
过去 20 年里,自动驾驶汽车的发展取得了长足的进步,尤其是随着深度学习的出现更是如此。到 2015 年,开始有公司宣布他们将在 2020 之前量产 AV。不过到目前为止,并且没有 level 4 级别的 AV 可以在市场上买到。
导致这一现象的原因有很多,但最重要的是,自动驾驶汽车的安全性能仍大大低于人类驾驶员。对于美国的普通驾驶员来说,在自然驾驶环境 (NDE) 中发生碰撞的概率约为 1.9 × 10^−6 per mile。相比之下,根据加利福尼亚 2021 年的脱离报告(Disengagement Reports)显示,最先进的自动驾驶汽车的脱离率约为 2.0 × 10^−5 / 英里。
注:脱离率是评定自动驾驶可靠性的重要指标,它描述的是系统运行每 1000 英里需要驾驶员接管的次数。系统的脱离率越低,意味着可靠性越佳。当脱离率等于 0 时,也就从某种程度上说明这个自动驾驶系统已经达到无人驾驶级别。
尽管脱离率会因为存在偏见而受到批评,但它已被广泛用于评价自动驾驶汽车安全性能。
提高自动驾驶汽车安全性能存在的一个关键瓶颈是安全验证效率低下。目前流行的是通过软件模拟、封闭测试轨道和道路测试相结合的方式来测试自动驾驶汽车的无损检测。这样一来,AV 开发人员必须支付大量的经济和时间成本来评估,从而阻碍了 AV 部署的进展。
在 NDE 环境中,进行 AV 安全性能验证非常复杂。例如,驾驶环境在时空上是复杂的,因此定义此类环境所需的变量是高维的。随着变量维数呈指数增长,计算复杂度也呈指数增长。在这种情况下,即使给定大量数据,深度学习模型也很难学习。
本文中,来自密歇根大学安娜堡分校、清华大学等机构的研究者,他们提出密集深度强化学习 (D2RL,dense deep-reinforcement-learning) 方法来解决这一挑战。
该研究登 Nature 封面。
- 论文地址:https://www.nature.com/articles/s41586-023-05732-2
- 项目地址:https://github.com/michigan-traffic-lab/Dense-Deep-Reinforcement-Learning
论文一作封硕,目前是清华大学自动化系终身助理教授(Tenure-Track Assistant Professor),此外,他还是密歇根大学交通研究所 (UMTRI) 的助理研究科学家。他于 2014 年和 2019 年在清华大学自动化系获得学士和博士学位,师从张毅教授。2017 年至 2019 年,他在密歇根大学土木与环境工程专业做访问博士,师从 Henry X. Liu 教授(本文通讯作者)。
研究介绍
D2RL 方法的基本思想是识别和去除非安全关键(non-safety-critical)数据,并利用安全关键数据训练神经网络。由于只有一小部分数据是安全关键的,因此其余数据的信息将被大量密集化。
与 DRL 方法相比,D2RL 方法可以在不损失无偏性(unbiasedness)的情况下显著减少多个数量级的策略梯度估计方差。这种显著的方差减少可以使神经网络学习和完成 DRL 方法难以处理的任务。
对于 AV 测试,该研究利用 D2RL 方法,通过神经网络训练周围车辆 (background vehicles,BV) 学习何时执行何种对抗性操作,旨在提高测试效率。D2RL 在基于 AI 的对抗性测试环境下可以将 AV 所需的测试里程减少多个数量级,同时确保了测试的无偏性。
D2RL 方法可以应用于复杂的驾驶环境,包括多条高速公路、十字路口和环岛,这是以前基于场景的方法无法实现的。并且,该研究提出的方法可以创建智能测试环境,即使用 AI 来验证 AI。这是一种范式转变,它为其他安全关键系统进行加速测试和训练打开了大门。
为了证明基于 AI 的测试方法是有效的,该研究使用大规模实际驾驶数据集对 BV 进行了训练,并进行了模拟实验和物理测试轨道的现场实验,实验结果如下图 1 所示。
密集深度强化学习
为了利用 AI 技术,该研究将 AV 测试问题表述为马尔可夫决策过程 (MDP),其中 BV 的操作是根据当前状态信息决定的。该研究旨在训练一个由神经网络建模的策略(DRL 智能体),它可以控制 BV 与 AV 交互的操作,以最大限度地提高评估效率并确保无偏性。然而,如上文所述,受维数和计算复杂度的限制,如果直接应用 DRL 方法,很难甚至根本无法学习有效策略。
由于大多数状态都是非关键的,无法为安全关键事件提供信息,因此 D2RL 的重点是去除这些非关键状态的数据。对于 AV 测试问题,可以利用许多安全指标来识别具有不同效率和有效性的关键状态。该研究利用的关键性度量指标是当前状态特定时间范围内(例如 1 秒)内 AV 碰撞率的外部近似值。然后该研究编辑了马尔可夫过程,丢弃非关键状态的数据,并将剩余数据用于 DRL 训练的策略梯度估计和 Bootstrap。
如下图 2 所示,相比于 DRL,D2RL 的优势是能够最大化训练过程中的奖励。
AV 仿真测试
为了评估 D2RL 方法的准确性、效率、可扩展性和通用性,该研究进行了仿真测试。对于每个测试集,该研究模拟了一段固定距离的交通行驶,然后记录并分析测试结果,如下图 3 所示。
为了进一步研究 D2RL 的可扩展性和泛化性,该研究对 AV-I 模型进行了不同车道数 (2 车道和 3 车道) 和行驶距离 (400 米、2 公里、4 公里和 25 公里) 的实验。本文对 25 公里行程进行了研究 ,因为在美国,平均通勤者单程旅行约为 25 公里。结果如表 1 所示:
以上就是《强化学习再登Nature封面,自动驾驶安全验证新范式大幅减少测试里程》的详细内容,更多关于AI,强化学习的资料请关注golang学习网公众号!

- 上一篇
- 让AI像婴儿一样思考!DeepMind“柏拉图”模型登Nature子刊

- 下一篇
- 硅谷银行倒闭后,OpenAI CEO 向多家初创公司提供紧急资金
-
- 科技周边 · 人工智能 | 4小时前 |
- 豆包AI修复代码错误技巧分享
- 438浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- 豆包AI设计数据库的实用技巧
- 201浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- Diffusers图像生成教程:扩散模型推理详解
- 377浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- 小米YU7撞车A柱完好,车主点赞小米品质
- 123浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 | 人机协作 VisionStory 视频创作 自动剪辑 AI推荐
- VisionStory功能详解:自动剪辑与AI推荐指南
- 120浏览 收藏
-
- 科技周边 · 人工智能 | 7小时前 |
- ScreenCoder:开源UI截图工具推荐
- 107浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 |
- 豆包大模型如何提升AI棋类教学效果?
- 396浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 |
- DeepSeek联飞书,智能协作升级方案
- 358浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 |
- 即梦AI动画制作教程:循环动画轻松做
- 499浏览 收藏
-
- 科技周边 · 人工智能 | 9小时前 |
- Deepseek满血版搭配Loom,轻松制作视频讲解
- 378浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 245次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 239次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 235次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 245次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 266次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览