当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > Meta推出MoDem世界模型:解决视觉领域三大挑战,LeCun转发

Meta推出MoDem世界模型:解决视觉领域三大挑战,LeCun转发

来源:51CTO.COM 2023-04-18 16:24:05 0浏览 收藏

从现在开始,努力学习吧!本文《Meta推出MoDem世界模型:解决视觉领域三大挑战,LeCun转发》主要讲解了等等相关知识点,我会在golang学习网中持续更新相关的系列文章,欢迎大家关注并积极留言建议。下面就先一起来看一下本篇正文内容吧,希望能帮到你!

12月27日,MetaAI 负责视觉和强化学习领域的A

图片

截止27日晚间,这篇推文的阅读量已经达到73.9k。

图片

他表示,仅给出5个演示,MoDem就能在100K交互步骤中解决具有稀疏奖励和高维动作空间的具有挑战性的视觉运动控制任务,大大优于现有的最先进方法。

有多优秀呢?

他们发现MoDem在完成稀疏奖励任务方面的成功率比低数据机制中的先前方法高出150%-250%

图片

Lecun也转发了这一研究,表示MoDem的模型架构类似于JEPA,可在表征空间做出预测且无需解码器。

图片

链接小编就放在下面啦,有兴趣的小伙伴可以看看~

图片

论文链接:https://arxiv.org/abs/2212.05698

Github链接:https://github.com/facebookresearch/modem

研究创新和模型架构

样本效率低下是实际应用部署深度强化学习 (RL) 算法的主要挑战,尤其是视觉运动控制。

基于模型的RL有可能通过同时学习世界模型并使用合成部署来进行规划和政策改进,从而实现高样本效率。

然而在实践中,基于模型的RL的样本高效学习受到探索挑战的瓶颈,这次研究恰恰解决了这些主要挑战。

首先,MoDem分别通过使用世界模型、模仿+RL和自监督视觉预训练,解决了视觉强化学习/控制领域的三个主要挑战:

  • 大样本复杂性(Large sample complexity)
  • 高维状态和动作空间探索(Exploration in high-dimensional state and action space)
  • 同步视觉表征和行为学习(Simultaneous learning of visual representations and behaviors)

图片

这次的模型架构类似于Yann LeCun的JEPA,并且无需解码器。

作者Aravind Rajeswaran表示,相比Dreamer需要像素级预测的解码器,架构繁重,无解码器架构可支持直接插入使用SSL预训练的视觉表示。

图片

此外基于IL+RL,他们提出了一个三阶段算法:

  • BC预训练策略
  • 使用包含演示和探索的种子数据集预训练世界模型,此阶段对于整体稳定性和效率很重要
  • 通过在线互动微调世界模型

图片

结果显示,生成的算法在21个硬视觉运动控制任务中取得了SOTA结果(State-Of-The-Art result),包括Adroit灵巧操作、MetaWorld和DeepMind控制套件。

从数据上来看,MoDem在各项任务中的表现远远优于其他模型,结果比之前的SOTA方法提升了150%到250%。

图片

红色线条为MoDem在各项任务中的表现

在此过程中,他们还阐明了MoDem中不同阶段的重要性、数据增强对视觉MBRL的重要性以及预训练视觉表示的实用性。

最后,使用冻结的 R3M 功能远远优于直接的 E2E 方法。这很令人兴奋,表明视频中的视觉预训练可以支持世界模型。

但8月数据强劲的E2E与冻结的R3M竞争,我们可以通过预训练做得更好。

图片

到这里,我们也就讲完了《Meta推出MoDem世界模型:解决视觉领域三大挑战,LeCun转发》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于模型,强化学习的知识点!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
人们不知道人工智能能做的十项任务人们不知道人工智能能做的十项任务
上一篇
人们不知道人工智能能做的十项任务
英国信息委员会警告:情感分析AI工具并不可靠有效
下一篇
英国信息委员会警告:情感分析AI工具并不可靠有效
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    23次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    36次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    37次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    47次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    40次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码