谷歌开源首个「方言」数据集:让机器翻译更地道
本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《谷歌开源首个「方言」数据集:让机器翻译更地道》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~
虽然全中国的人都在说汉语,但具体到各地的方言却略有不同,比如同样是小巷的意思,「胡同」一开口就知道是老北京了,而到了南方则叫「弄」。
这种细微的地域性差异反应在「机器翻译」任务上,就会显得翻译结果不够「地道」,而目前几乎所有的机器翻译系统都没有考虑地区性语言(即方言)的影响。
而在世界范围内也存在这种现象,比如巴西的官方语言是葡萄牙语,跟欧洲的葡萄牙语之间也有一些地域性差异。
最近谷歌发布了一个全新的,可用于Few-shot Region-aware机器翻译的数据集和评估基准FRMT,主要解决方言翻译问题,论文发表在TACL(Transactions of the Association for Computational Linguistics)上。
论文链接:https://arxiv.org/pdf/2210.00193.pdf
开源链接:https://github.com/google-research/google-research/tree/master/frmt
该数据集包括从英语到葡萄牙语和中文普通话的两个地区变体的专业翻译,源文档是为了能够详细分析感兴趣的现象,包括词汇上不同的术语和干扰术语。
研究人员探索了 FRMT 的自动评估指标,并在区域匹配和不匹配评分情景下验证了其与专家人工评估的相关性。
最后,为这项任务提出了一些基线模型,并为研究人员如何训练、评估和比较自己的模型提供指导建议,数据集和评估代码已开源。
Few-Shot泛化
大多数现代机器翻译系统都经过数百万或数十亿翻译样本的训练,输入数据包括英语输入句及其相应的葡萄牙语翻译。
然而,绝大多数可用的训练数据并没有说明翻译的地区差异。
鉴于这种数据稀缺性,研究人员将 FRMT 定位为few-shot翻译的基准,当给定每种语言不超过100个带标签的例子时,测量机器翻译模型识别出指定区域语言变体的能力。
机器翻译模型需要根据少量标记过的样本(即范例)中显示的语言模式,来识别出其他未标记训练样本中的相似模式。模型需要通过这种方式进行泛化,从而生成模型中没有明确指定区域的「地道」翻译结果。
比如输入句子:The bus arrived,再给定几个巴西葡萄牙语的例子,模型应该能翻译出「O ônibus chegou」;如果给的样例是欧洲葡萄牙语,模型的翻译结果应该变为「O autocarro chegou」。
机器翻译的few-shot方法是很有研究价值的,能够以一种非常简单的方式来对现有系统中增加对额外区域语言的支持能力。
虽然谷歌目前发表的工作是针对两种语言的区域变体,但研究人员预测,一个好的方法将很容易适用于其他语言和区域的变体。
从原理上来说,这些方法也适用于其他语言差异现象,例如礼节和风格等。
数据收集
FRMT 数据集包括部分英文维基百科文章,来源于 Wiki40b 数据集,这些文章已经由付费的专业翻译人员翻译成不同的地区性的葡萄牙语和汉语。
为了突出关键区域感知的翻译难题,研究人员使用了三个内容桶(content buckets)来设计数据集:
1. 词汇 Lixical
词汇桶主要关注不同地区在词汇选择上的差异,例如当把一个带有单词「bus」的句子分别翻译成巴西语和欧洲葡萄牙语时,模型需要能够识别出「ônibus」与「autocarro」的区别。
研究人员根据博客和教育网站手动收集了20-30个具有地区特色的翻译术语,并根据来自每个地区的母语志愿者的反馈对翻译进行过滤和审核。
根据得到的英语术语列表,从相关的英语维基百科文章(例如,bus)中提取出100个句子。再对普通话,重复上述相同的的收集过程。
2. 实体 Entity
实体桶以类似的方式填充,涉及的人、位置或其他实体与某一特定语言所涉两个区域之一有着密切联系。
比如给定一个说明性的句子,如「In Lisbon, I often took the bus.」(在里斯本,我经常坐公共汽车。),为了正确地将其翻译成巴西葡萄牙语,模式必须能够识别出两个潜在的陷阱:
1)里斯本和葡萄牙之间更密切的地理关联可能会影响模型翻译的选择,从而帮助模型判断出应该翻译成欧洲葡萄牙语而非巴西葡萄牙语,即选择「autocarro」而不是「ônibus」。
2)用「巴西利亚」代替「里斯本」可能是一个比较简单的方式,对于同一个模式,对巴西葡萄牙语本地化其输出,即便翻译结果仍然很流畅,但也可能会导致不准确的语义。
3. 随机 Random
随机桶用于检查一个模型是否正确处理了其他不同的现象,包含从维基百科的featured和good)集合中随机抽取的100篇文章。
系统性能
为了验证为 FRMT 数据集收集的翻译能够捕获特定区域的现象,研究人员对数据质量进行了人工评估。
来自每个相应区域的专家标注员使用多维质量度量(MQM)框架来识别和分类翻译中的错误:该框架包括一个分类加权方案,将识别出的错误转换成一个单一的分数,粗略地表示每句话的主要错误数量,即数值越小表示翻译越好。
对于每个地区,研究人员要求 MQM 评分者对来自他们所在地区的翻译和来自他们语言的其他地区的翻译进行评分。
例如,巴西的葡萄牙语评分员同时对巴西和欧洲的葡萄牙语译本都进行了评分,两个分数之间的差异表明语言现象的普遍性,即该语言变体是否可接受,而并非是另一种语言。
实验结果发现,在葡萄牙语和汉语中,评分者平均比匹配的译文中每个句子多发现大约两个主要错误,表明FRMT数据集确实能够捕获特定区域的语言现象。
虽然人工评估是确保模型质量的最佳方法,但其往往是缓慢且昂贵的。
因此,研究人员希望找到一个现成的自动度量指标,可以用来评估模型在基准中的性能,研究人员考虑选择使用 chrF,BLEU 和 BLEURT.
根据 MQM 评估者对几个基线模型翻译结果的评分,可以发现 BLEURT 与人类判断具有最好的相关性,并且该相关性的强度(0.65 Pearson 相关系数,ρ)与标注者间一致性(0.70组内相关性)相当。
系统性能
文中评估了一些最近发布的、具有few-shot控制能力的模型。
基于 MQM 的人类评估,基线方法都表现出一定的localize葡萄牙语输出的能力,但是对于中文普通话,大多没有利用目标地区的知识来生成优秀的当地翻译结果。
在评估的基准中,谷歌的语言模型 PaLM 模型的性能最佳,为了使用 PaLM 生成针对区域的翻译,首先将一个有指导意义的提示输入模型,然后从中生成文本以填充空白。
PaLM 仅通过一个例子就获得了很好的结果,在葡萄牙语方面,当增加到10个例子时,质量略有提高,考虑到 PaLM 是在无监督的情况下进行训练的,这种表现已经非常好了。
研究结果还表明,像 PaLM 这样的语言模型可能特别擅长记忆流畅翻译所需的特定区域的词汇选择。
然而,在 PaLM 和人类之间仍然存在显著的性能差距。
参考资料:
https://ai.googleblog.com/2023/02/frmt-benchmark-for-few-shot-region.html
到这里,我们也就讲完了《谷歌开源首个「方言」数据集:让机器翻译更地道》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于谷歌,数据集,机器翻译的知识点!

- 上一篇
- 大神李沐、快手元老李岩被曝离职后转投大模型,ChatGPT掀起AI创业狂飙

- 下一篇
- 刚刚,ChatGPT官宣数学能力再升级,网友:终于精通十以内加减法了
-
- 科技周边 · 人工智能 | 4分钟前 |
- 豆包订阅管理及付费方式全解析
- 119浏览 收藏
-
- 科技周边 · 人工智能 | 7分钟前 |
- 豆包大模型搭配AI书法工具设计字体教程
- 420浏览 收藏
-
- 科技周边 · 人工智能 | 11分钟前 |
- 豆包AI软装工具,轻松打造焕新家居
- 292浏览 收藏
-
- 科技周边 · 人工智能 | 19分钟前 |
- AIOverviews怎么关?关闭教程详解
- 356浏览 收藏
-
- 科技周边 · 人工智能 | 29分钟前 |
- 通灵义码进阶技巧全解析
- 482浏览 收藏
-
- 科技周边 · 人工智能 | 34分钟前 |
- 豆包AI写Scala代码实战教程
- 398浏览 收藏
-
- 科技周边 · 人工智能 | 36分钟前 |
- 豆包AI写WebSocket教程详解
- 483浏览 收藏
-
- 科技周边 · 人工智能 | 46分钟前 |
- 豆包AI学大数据:Hadoop与Spark入门教程
- 155浏览 收藏
-
- 科技周边 · 人工智能 | 48分钟前 |
- 豆包AI生成数据库连接代码方法详解
- 302浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 豆包AI编程技巧与工具使用指南
- 160浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 文心一言图生图使用教程详解
- 415浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 509次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 边界AI平台
- 探索AI边界平台,领先的智能AI对话、写作与画图生成工具。高效便捷,满足多样化需求。立即体验!
- 17次使用
-
- 免费AI认证证书
- 科大讯飞AI大学堂推出免费大模型工程师认证,助力您掌握AI技能,提升职场竞争力。体系化学习,实战项目,权威认证,助您成为企业级大模型应用人才。
- 43次使用
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 166次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 243次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 186次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览