八个常见的机器学习算法的计算复杂度总结
来源:51CTO.COM
2023-04-25 18:48:47
0浏览
收藏
偷偷努力,悄无声息地变强,然后惊艳所有人!哈哈,小伙伴们又来学习啦~今天我将给大家介绍《八个常见的机器学习算法的计算复杂度总结》,这篇文章主要会讲到等等知识点,不知道大家对其都有多少了解,下面我们就一起来看一吧!当然,非常希望大家能多多评论,给出合理的建议,我们一起学习,一起进步!
计算的复杂度是一个特定算法在运行时所消耗的计算资源(时间和空间)的度量。
计算复杂度又分为两类:
1、时间复杂度
时间复杂度不是测量一个算法或一段代码在某个机器或者条件下运行所花费的时间。时间复杂度一般指时间复杂性,时间复杂度是一个函数,它定性描述该算法的运行时间,允许我们在不运行它们的情况下比较不同的算法。例如,带有O(n)的算法总是比O(n²)表现得更好,因为它的增长率小于O(n²)。
2、空间复杂度
就像时间复杂度是一个函数一样,空间复杂度也是如此。 从概念上讲,它与时间复杂度相同,只需将时间替换为空间即可。 维基百科将空间复杂度定义为:
算法或计算机程序的空间复杂度是解决计算问题实例所需的存储空间量,以特征数量作为输入的函数。
下面我们整理了一些常见的机器学习算法的计算复杂度。
1、线性回归
- n= 训练样本数,f = 特征数
- 训练时间复杂度:O(f²n+f³)
- 预测时间复杂度:O(f)
- 运行时空间复杂度:O(f)
2、逻辑回归:
- n= 训练样本数,f = 特征数
- 训练时间复杂度:O(f*n)
- 预测时间复杂度:O(f)
- 运行时空间复杂度:O(f)
3、支持向量机:
- n= 训练样本数,f = 特征数,s= 支持向量的数量
- 训练时间复杂度:O(n²) 到 O(n³),训练时间复杂度因内核不同而不同。
- 预测时间复杂度:O(f) 到 O(s*f):线性核是 O(f),RBF 和多项式是 O(s*f)
- 运行时空间复杂度:O(s)
4、朴素贝叶斯:
- n= 训练样本数,f = 特征数,c = 分类的类别数
- 训练时间复杂度:O(n*f*c)
- 预测时间复杂度:O(c*f)
- 运行时空间复杂度:O(c*f)
5、决策树:
- n= 训练样本数,f = 特征数,d = 树的深度,p = 节点数
- 训练时间复杂度:O(n*log(n)*f)
- 预测时间复杂度:O(d)
- 运行时空间复杂度:O(p)
6、随机森林:
- n= 训练样本数,f = 特征数,k = 树的数量,p=树中的节点数,d = 树的深度
- 训练时间复杂度:O(n*log(n)*f*k)
- 预测时间复杂度:O(d*k)
- 运行时空间复杂度:O(p*k)
7、K近邻:
n= 训练样本数,f = 特征数,k= 近邻数
Brute:
- 训练时间复杂度:O(1)
- 预测时间复杂度:O(n*f+k*f)
- 运行时空间复杂度:O(n*f)
kd-tree:
- 训练时间复杂度:O(f*n*log(n))
- 预测时间复杂度:O(k*log(n))
- 运行时空间复杂度:O(n*f)
8、K-means 聚类:
- n= 训练样本数,f = 特征数,k= 簇数,i = 迭代次数
- 训练时间复杂度:O(n*f*k*i)
- 运行时空间复杂度:O(n*f+k*f)
今天关于《八个常见的机器学习算法的计算复杂度总结》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!
版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- 首次解密小红书“种草”机制:大规模深度学习系统技术是如何应用的

- 下一篇
- 微软为何非要在必应中添加 ChatGPT?每增 1% 搜索份额就能带来 20 亿美元收入
评论列表
-
- 时尚的春天
- 这篇博文太及时了,好细啊,赞 👍👍,收藏了,关注up主了!希望up主能多写科技周边相关的文章。
- 2023-05-02 09:45:51
-
- 欢呼的黑裤
- 太给力了,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,看完之后很有帮助,总算是懂了,感谢作者分享技术文章!
- 2023-04-29 11:48:04
查看更多
最新文章
-
- 科技周边 · 人工智能 | 6分钟前 | 亚马逊
- 亚马逊微软数据中心租赁进度放缓
- 192浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 特斯拉股价开盘跌5.6%,Q1交付33万辆同比降13%
- 397浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 24次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 38次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 38次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 50次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 41次使用
查看更多
相关文章
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览