当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > AI能证明数学数据库中82%的问题了,新SOTA已达成,还是基于Transformer

AI能证明数学数据库中82%的问题了,新SOTA已达成,还是基于Transformer

来源:51CTO.COM 2023-04-15 13:38:55 0浏览 收藏

最近发现不少小伙伴都对科技周边很感兴趣,所以今天继续给大家介绍科技周边相关的知识,本文《AI能证明数学数据库中82%的问题了,新SOTA已达成,还是基于Transformer》主要内容涉及到等等知识点,希望能帮到你!当然如果阅读本文时存在不同想法,可以在评论中表达,但是请勿使用过激的措辞~

AI能证明数学数据库中82%的问题了,新SOTA已达成,还是基于Transformer

不得不说,科学家们最近都在痴迷给AI补数学课了。

这不,脸书团队也来凑热闹,提出了一种新模型,能完全自动化论证定理,并显著优于SOTA。

要知道,随着数学定理愈加复杂,之后再仅凭人力来论证定理只会变得更加困难。

因此,用计算机论证数学定理已经成为一个研究焦点。

此前OpenAI也提出过专攻这一方向的模型GPT-f,它能论证Metamath中56%的问题。

而这次提出的最新方法,能将这一数字提升到82.6%。

与此同时,研究人员表示该方法使用的时间还更短,与GPT-f相比可以将计算消耗缩减到原本的十分之一。

难道说这一次AI大战数学,是要成功了?

还是Transformer

本文提出的方法为一种基于Transformer的在线训练程序。

大致可以分为三步:

第一、在数学证明库中预训练;

第二、在有监督数据集上微调策略模型;

第三、在线训练策略模型和判断模型。

具体来看是利用一种搜索算法,让模型在已有的数学证明库中学习,然后去推广证明更多的问题。

其中数学证明库包括3种,分别是Metamath、Lean和自研的一种证明环境。

这些证明库简单来说,就是把普通数学语言转换成近似于编程语言的形式。

AI能证明数学数据库中82%的问题了,新SOTA已达成,还是基于Transformer

Metamath的主库是set.mm,包含基于ZFC集合论的约38000个证明。

Lean更为人熟知的,是微软那个可以参加IMO赛事的AI算法。Lean库就是为了教会同名算法所有的本科数学知识,并让它学会证明这些定理。

这项研究的主要目标,是为了构建一个证明器,让它可以自动生成一系列合适的策略去论证问题。

为此,研究人员提出了一个基于MCTS的非平衡超图证明搜索算法。

MCTS译为蒙特卡洛树搜索,常用于解决博弈树问题,它因为AlphaGo所被人熟知。

它的运行过程,就是通过在搜索空间中随机抽样来找寻有希望的动作,然后根据这个动作来扩展搜索树。

本项研究采用的思路类似于此。

搜索证明过程从目标g开始,向下搜索方法,逐步发展成一个超图(Hypergraph)。

当出现一个分支下出现空集时,就意味着找到了一个最优证明。

最后,在反向传播过程中,记下超树的节点值和总操作次数。

AI能证明数学数据库中82%的问题了,新SOTA已达成,还是基于Transformer

在这个环节中,研究人员假设了一个策略模型和一个判断模型。

策略模型允许判断模型进行抽样,判断模型可以评估当前策略找到证明方法的能力。

整个搜索算法,就以如上两个模型作为参照。

而这两个模型都是Transformer模型,且权值共享。

接下来,就到了在线训练的阶段。

这个过程中,控制器会将语句发送给异步HTPS验证,并收集训练和证明数据。

然后验证器会将训练样本发送给分布式训练器,并定期同步其模型副本。

AI能证明数学数据库中82%的问题了,新SOTA已达成,还是基于Transformer

实验结果

在测试环节,研究人员将HTPS与GPT-f进行了比较。

后者是OpenAI此前提出的数学定理推理模型,同样基于Transformer。

结果表明,在线训练后的模型可以证明Metamath中82%的问题,远超GPT-f此前56.5%的记录。

AI能证明数学数据库中82%的问题了,新SOTA已达成,还是基于Transformer

在Lean库中,这一模型可以证明其中43%的定理,比SOTA提高了38%,以下是该模型证明出的IMO试题。

AI能证明数学数据库中82%的问题了,新SOTA已达成,还是基于Transformer

不过目前它还不是十全十美。

比如在如下这道题中,它并没有用最简便的办法解出题目,研究人员表示这是因为注释中出现了错误。

AI能证明数学数据库中82%的问题了,新SOTA已达成,还是基于Transformer

One More Thing

用计算机论证数学问题,四色定理的证明便是最为人熟知的例子之一。

四色定理是近代数学三大难题之一,它提出“任何一张地图只用四种颜色就能使具有共同边界的国家,着上不同的颜色”。

由于这一定理的论证需要大量计算,在它被提出后100年内,都没有人能完全论证。

直到1976年,在美国伊利诺斯大学两台计算机上,经过1200小时、100亿次判断后,终于可以论证任何一张地图都只需要4种颜色来标记,由此也轰动了整个数学界。

加之随着数学问题愈加复杂,用人力来检验定理是否正确也变得更加困难。

近来,AI界也把目光逐步聚焦在数学问题上。

2020年,OpenAI推出数学定理推理模型GPT-f,可用于自动定理证明。

这一方法可完成测试集中56.5%的证明,超过当时SOTA模型MetaGen-IL30%以上。

同年,微软也发布了可以做出IMO试题的Lean,这意味着AI能做出没见过的题目了。

去年,OpenAI给GPT-3加上验证器后,做数学题效果明显好于此前微调的办法,可以达到小学生90%的水平。

今年1月,来自MIT+哈佛+哥伦比亚大学+滑铁卢大学的一项联合研究表明,他们提出的模型可以做高数了。

总之,科学家们正在努力让AI这个偏科生变得文理双全。

理论要掌握,实操不能落!以上关于《AI能证明数学数据库中82%的问题了,新SOTA已达成,还是基于Transformer》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
数据网格在物联网、人工智能和机器学习中的用例和应用数据网格在物联网、人工智能和机器学习中的用例和应用
上一篇
数据网格在物联网、人工智能和机器学习中的用例和应用
分布式系统必须知道的一个共识算法:Raft
下一篇
分布式系统必须知道的一个共识算法:Raft
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    499次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PandaWiki开源知识库:AI大模型驱动,智能文档与AI创作、问答、搜索一体化平台
    PandaWiki开源知识库
    PandaWiki是一款AI大模型驱动的开源知识库搭建系统,助您快速构建产品/技术文档、FAQ、博客。提供AI创作、问答、搜索能力,支持富文本编辑、多格式导出,并可轻松集成与多来源内容导入。
    128次使用
  • SEO  AI Mermaid 流程图:自然语言生成,文本驱动可视化创作
    AI Mermaid流程图
    SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
    925次使用
  • 搜获客笔记生成器:小红书医美爆款内容AI创作神器
    搜获客【笔记生成器】
    搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
    946次使用
  • iTerms:一站式法律AI工作台,智能合同审查起草与法律问答专家
    iTerms
    iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
    960次使用
  • TokenPony:AI大模型API聚合平台,一站式接入,高效稳定高性价比
    TokenPony
    TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
    1029次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码