当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 机器学习推动印度医疗行业变革

机器学习推动印度医疗行业变革

来源:51CTO.COM 2023-04-29 08:53:32 0浏览 收藏

一分耕耘,一分收获!既然打开了这篇文章《机器学习推动印度医疗行业变革》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!

机器学习推动印度医疗行业变革

医疗行业已经成为印度经济体系中最大的行业之一。根据NITIAyog的一份报告,自2016年以来印度医疗行业的年复合增长率已经达到22%,创造了数百万个工作岗位,未来还会成倍增加。一个缺乏临床资源、护理分配严重不平衡的国家,是如何实现这么高的发展速度?机器学习是其中的一个关键因素。

解决问题:原始数据太多,真正的洞察太少

医疗环境中充斥着来自临床医生笔记、医疗设备、实验室等环境的大量复杂数据,各种远程患者可穿戴设备让压力与日俱增。电子健康记录有助于推动信息数字化,但主要任务并不是为了减轻前端管理工作量,或者提供一目了然的决策支持。

当你可以快速获得洞察,并采取适当措施来改善医疗服务交付能力,只有这样所有输入的数据才是具有价值的。机器学习可以实现这一点,尤其是对于那些具有清晰模式的数字化数据集来说,机器学习不仅可以收集不同来源的数据,而且可以对这些数据进行统一,可以执行医生、护士和医疗团队其他成员所需的复杂计算,快速洞察原始生理、行为和成像方面的信息。

手动任务的自动化

机器学习通过利用算法来获得洞察力,从而减少了外科医生、放射科医生、病理学家们的工作量。围绕医疗团队现实工作方式所设计的自动化工作流,往往被用于简化信息共享和彼此之间的协作。典型应用包括:

  • 利用广泛可用的数据集进行成像分析。
  • 在ICU或者手术室进行精确的患者监护。
  • 通过可跟踪心率、活动水平等指标的可穿戴设备,进行实时远程患者监控。
  • 简化繁琐的管理任务,例如临床文书工作。

强大的预测能力

以前,对某个特定患者接下来采取什么措施进行精准预测性分析,往往会遇到两个阻碍:收集数据负担大,计算难度高。有了机器学习之后,数据收集速度和计算复杂性不再取决于人类可以手动完成多少工作,人们利用强大的算法就可以根据每个患者的具体情况,量身制定治疗决策,从而获得更好的结果。

数字化转型:接下来会发生什么

印度已准备好在医疗领域进行令人兴奋的数字化转型。机器学习和其他创新技术(包括自动化和自然语言处理等其他AI技术)的渗透率正在飙升,而且5G即将到来。目前印度国内正在形成一个充满活力的生态系统,其中不仅包括初创公司,还有成熟的健康科技企业,越来越庞大的人口规模填补了新的角色,医疗提供商对技术方法有了很多的认识,他们可以用更少的人力来做更多的事情,政府则加大投入不断发展演进的医疗服务交付能力,公众对此表示支持。

政府的使命是改造医疗基础设施

自2020年以来,由于新冠疫情大流行,印度政府一直将重点放在投资印度医疗基础设施上,这也使很多科技企业能够涉足医疗领域并进行创新,为改善印度的医疗设施做出贡献。根据数字印度倡议(Digital
India Initiative),印度政府最近宣布启动Ayushman Bharat Health
Mission(ABDM)计划,旨在创建印度数字健康生态系统。该计划的重点,是为公民及其家人创建数字健康记录,以便以数字方式访问和共享这些记录。在该计划下,公民将收到一个随机生成的14位数字,作为识别个人、验证身份的唯一方式,以及在知情并得到同意的情况下,将公民的健康记录传递给多个系统和利益相关方。此外,包容性是ABDM计划的关键原则之一,ABDM打造的数字健康生态系统以无缝方式支持初级、二级和三级医疗系统的连续性,通过远程医疗等各种技术干预措施帮助提供医疗保健服务,特别是在偏远和农村地区。

随着印度政府推动加强数字医疗基础设施,印度的数字医疗初创企业提供了广泛的解决方案,印度的医疗生态系统中的初创企业远远超出了特定疾病、治疗领域、地理位置、产品类型、以及服务或商业模式。在印度,让公民负能够担得起医疗服务,仍然是一个迫在眉睫的问题,在这个背景下数字医疗行业的发展将让公民从中受益匪浅。ABDM是一项独一无二的战略,旨在统一印度的医疗系统并促进行业创新。鉴于政府和创新者都关心公共利益,因此从法律角度如何看待数字健康,还有待观察。虽然还有很长的路要走,但在过去一年中人工智能和机器学习技术已经在印度站稳了脚跟,预计这个行业的未来充满希望。

今天关于《机器学习推动印度医疗行业变革》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于机器学习,医疗行业变革的内容请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
谷歌、斯坦福联合发文:我们为什么一定要用大模型?谷歌、斯坦福联合发文:我们为什么一定要用大模型?
上一篇
谷歌、斯坦福联合发文:我们为什么一定要用大模型?
PromptPG:当强化学习遇见大规模语言模型
下一篇
PromptPG:当强化学习遇见大规模语言模型
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    24次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    38次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    37次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    48次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    41次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码