在两行Python代码中应用 40 个机器学习模型
学习知识要善于思考,思考,再思考!今天golang学习网小编就给大家带来《在两行Python代码中应用 40 个机器学习模型》,以下内容主要包含等知识点,如果你正在学习或准备学习科技周边,就都不要错过本文啦~让我们一起来看看吧,能帮助到你就更好了!
我们将使用lazypredict库,它允许我们只用一行代码在我们的数据集上实现许多机器学习模型,本文将演示lazypredict的快速使用。
步骤1、使用以下命令安装lazypredict 库:
pip install lazypredict
步骤2、导入pandas库,以加载我们的机器学习数据集。
数据集链接:https ://raw.githubusercontent.com/tirthajyoti/Machine-Learning-with-Python/master/Datasets/Mall_Customers.csv
import pandas as pd
df=pd.read_csv("Mall_Customers.csv")
步骤3、查看机器学习数据集前几行。
df.head()
步骤4、拆分训练集和测试集。这里 Y 变量是 Spending Score 列,而其余列是 X 变量。
from sklearn.model_selection import train_test_split
x=df.loc[:,df.columns!='Spending Score (1-100)']
y=df['Spending Score (1-100)']
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
步骤5、让我们导入之前安装的lazypredict库,lazypredict里面有两个类,一个是Classification类,一个是Regression类。
import lazypredict
from lazypredict.Supervised import LazyRegressor
from lazypredict.Supervised import LazyClassifier
导入后,我们将使用 LazyRegressor,因为我们正在处理回归问题,如果您处理的分类问题,这两种类型的问题都需要类似的步骤。
multiple_ML_model=LazyRegressor(verbose=0,ignore_warnings=True,predictions=True)
models,predictions=multiple_ML_model.fit(x_train,x_test,y_train,y_test)
在这里,prediction = True意味着您想要获得每个模型的准确性并想要对每个模型进行预测。
模型的变量包含每个模型的准确度,以及其他一些重要的信息。
models
如您所见,它已经在我的回归问题上实现了42 个 机器学习模型,本指南更侧重于如何测试许多模型而不是提高它们的准确性。
查看每个机器学习模型的预测如下:
predictions
您可以使用这些预测来创建混淆矩阵。
如果您正在处理分类问题,这就是您使用lazypredict 库的方式。
multiple_ML_model=LazyClassifier(verbose=0,ignore_warnings=True,predictions=True)
models,predictions=multiple_ML_model.fit(x_train,x_test,y_train,y_test)
要记住的关键点:
- 该库仅用于测试目的,为您提供有关哪种模型在您的数据集上表现良好的信息。
- 因为我将要使用的库需要的是特定版本,所以建议使用一个单独环境。
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于科技周边的相关知识,也可关注golang学习网公众号。

- 上一篇
- 机器学习:不要低估树模型的威力

- 下一篇
- 直击WAIC2022丨九章云极DataCanvas公司携因果学习技术成果精彩亮相
-
- 无心的母鸡
- 写的不错,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,帮助很大,总算是懂了,感谢楼主分享博文!
- 2023-06-25 10:33:11
-
- 俭朴的电灯胆
- 这篇文章出现的刚刚好,太细致了,感谢大佬分享,已加入收藏夹了,关注作者大大了!希望作者大大能多写科技周边相关的文章。
- 2023-05-01 13:24:11
-
- 科技周边 · 人工智能 | 38分钟前 |
- 即梦AI语音转文字教程及自动字幕生成指南
- 344浏览 收藏
-
- 科技周边 · 人工智能 | 42分钟前 |
- 即梦ai多语言版导出教程字幕翻译功能详解
- 249浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 小鹏P7Ultra与G7谍照对比:风格大不同
- 114浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- AI证件照如何变得更真实?
- 392浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 | AI基础设施 a轮融资 1亿美元 TensorWave AMDGPU
- TensorWave获AMD领投1亿美元A轮融资
- 215浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 魔匠AI
- SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
- 10次使用
-
- PPTFake答辩PPT生成器
- PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
- 26次使用
-
- Lovart
- SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
- 25次使用
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 35次使用
-
- PetGPT
- SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
- 36次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览