当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 真的有这么丝滑:3D头发建模新方法NeuralHDHair,浙大、ETH Zurich、CityU联合出品

真的有这么丝滑:3D头发建模新方法NeuralHDHair,浙大、ETH Zurich、CityU联合出品

来源:51CTO.COM 2023-04-19 12:32:58 0浏览 收藏

本篇文章向大家介绍《真的有这么丝滑:3D头发建模新方法NeuralHDHair,浙大、ETH Zurich、CityU联合出品》,主要包括,具有一定的参考价值,需要的朋友可以参考一下。

近年来,虚拟数字人行业爆火,各行各业都在推出自己的数字人形象。毫无疑问,高保真度的 3D 头发模型可以显著提升虚拟数字人的真实感。与人体的其他部分不同,由于交织在一起的头发结构极其复杂,因此描述和提取头发结构更具挑战性,这使得仅从单一视图重建高保真的 3D 头发模型极其困难。一般来说,现有的方法都是通过两个步骤来解决这个问题:首先根据从输入图像中提取的 2D 方向图估计一个 3D 方向场,然后根据 3D 方向场合成头发丝。但这种机制在实践中仍在存在一些问题。

基于实践中的观察,研究者们正在寻求一个完全自动化和高效的头发模型建模方法,可以从具备细粒度特征的单一图像重建一个 3D 头发模型(如图 1),同时显示出高度的灵活性,比如重建头发模型只需要网络的一个前向传递。

真的有这么丝滑:3D头发建模新方法NeuralHDHair,浙大、ETH Zurich、CityU联合出品

为了解决这些问题,来自浙江大学、瑞士苏黎世联邦理工学院和香港城市大学的研究者提出了 IRHairNet,实施一个由粗到精的策略来生成高保真度的 3D 方向场。具体来说,他们引入了一种新颖的 voxel-aligned 的隐函数(VIFu)来从粗糙模块的 2D 方向图中提取信息。同时,为了弥补 2D 方向图中丢失的局部细节,研究者利用高分辨率亮度图提取局部特征,并结合精细模块中的全局特征进行高保真头发造型。

为了有效地从 3D 方向场合成头发丝模型,研究者引入了 GrowingNet,一种基于深度学习利用局部隐式网格表征的头发生长方法。这基于一个关键的观察:尽管头发的几何形状和生长方向在全局范围内有所不同,但它们在特定的局部范围内具有相似的特征。因此,可以为每个局部 3D 方向 patch 提取一个高级的潜在代码,然后训练一个神经隐函数 (一个解码器) 基于这个潜在代码在其中生长头发丝。在每一个生长步骤之后,以头发丝的末端为中心的新的局部 patch 将被用于继续生长。经过训练后,它可适用于任意分辨率的 3D 定向场。

真的有这么丝滑:3D头发建模新方法NeuralHDHair,浙大、ETH Zurich、CityU联合出品

论文:https://arxiv.org/pdf/2205.04175.pdf

IRHairNet 和 GrowingNet 组成了 NeuralHDHair 的核心。具体来说,这项研究的主要贡献包括:

  • 介绍了一种新颖的全自动单目毛发建模框架,其性能明显优于现有的 SOTA 方法;
  • 介绍了一个从粗到细的毛发建模神经网络(IRHairNet) ,使用一个新颖的 voxel-aligned 隐函数和一个亮度映射来丰富高质量毛发建模的局部细节;
  • 提出了一种基于局部隐函数的新型头发生长络(GrowingNet) ,可以高效地生成任意分辨率的头发丝模型,这种网络比以前的方法的速度实现了一定数量级的提升。

方法

图 2 展示了 NeuralHDHair 的 pipeline。对于人像图像,首先计算其 2D 方向图,并提取其亮度图。此外,自动将它们对齐到相同的半身参考模型,以获得半身像深度图。然后,这三个图随后被反馈到 IRHairNet。

真的有这么丝滑:3D头发建模新方法NeuralHDHair,浙大、ETH Zurich、CityU联合出品

  • IRHairNet 设计用于从单个图像生成高分辨率 3D 头发几何特征。这个网络的输入包括一个 2D 定向图、一个亮度图和一个拟合的半身深度图,这些都是从输入的人像图中得到的。输出是一个 3D 方向字段,其中每个体素内包含一个局部生长方向,以及一个 3D 占用字段,其中每个体素表示发丝通过 (1) 或不通过(0)。
  • GrowingNet 设计用于从 IRHairNet 估计的 3D 定向场和 3D 占用字段高效生成一个完整的头发丝模型 ,其中 3D 占用字段是用来限制头发的生长区域。

更多方法细节可参考原论文内容。

实验

在这一部分,研究者通过消融研究评估了每个算法组件的有效性和必要性 (第 4.1 节),然后将本文方法与当前的 SOTA(第 4.2 节) 进行比较。实施细节和更多的实验结果可以在补充材料中找到。

消融实验

真的有这么丝滑:3D头发建模新方法NeuralHDHair,浙大、ETH Zurich、CityU联合出品

研究者从定性和定量的角度评估了 GrowingNet 的保真度和效率。首先对合成数据进行三组实验:1)传统的头发生长算法,2)没有重叠潜在 patch 方案的 GrowingNet,3)本文的完整模型。

如图 4 和表 1 所示,与传统的头发生长算法相比,本文的 GrowingNet 在时间消耗上具有明显的优势,同时在视觉质量上保持了相同的生长性能。此外,通过比较图 4 的第三列和第四列,可以看到,如果没有重叠潜在 patch 方案,patch 边界处的发丝可能是不连续的,当发丝的生长方向急剧变化时,这个问题就更加严重。不过值得注意的是,这种方案以略微降低精度为代价,大大提高了效率,提高效率对于其方便、高效地应用于人体数字化是有重要意义的。

真的有这么丝滑:3D头发建模新方法NeuralHDHair,浙大、ETH Zurich、CityU联合出品

真的有这么丝滑:3D头发建模新方法NeuralHDHair,浙大、ETH Zurich、CityU联合出品

与 SOTA 方法对比

为了评估 NeuralHDHair 的性能,研究者将其与一些 SOTA 方法 [6,28,30,36,40] 进行了对比。其中 Autohair 基于数据驱动的方法进行头发合成,而 HairNet [40]忽略头发生长过程来实现端到端的头发建模。相比之下,[28,36]执行一个两步策略,首先估计一个 3D 方向场,然后从中合成发丝。PIFuHD [30]是一种基于粗到细策略的单目高分辨率 3D 建模方法,可以用于 3D 头发建模。

如图 6 所示,HairNet 的结果看起来差强人意,但是局部的细节,甚至整体的形状与输入图像中的头发不一致。这是因为该方法用一种简单而粗糙的方式来合成头发,直接从单一的图像中恢复无序的发丝。

真的有这么丝滑:3D头发建模新方法NeuralHDHair,浙大、ETH Zurich、CityU联合出品

这里还将重建结果与 Autohair[6]和 Saito[28]进行了比较。如图 7 所示,虽然 Autohair 可以合成真实的结果,但结构上不能很好地匹配输入图像,因为数据库包含的发型有限。另一方面,Saito 的结果缺乏局部细节,形状与输入图像不一致。相比之下,本文方法的结果更好地保持了头发的全局结构和局部细节,同时确保了头发形状的一致性。

真的有这么丝滑:3D头发建模新方法NeuralHDHair,浙大、ETH Zurich、CityU联合出品

PIFuHD [30]和 Dynamic Hair [36]则致力于估计高保真度的 3D 头发几何特征,以生成真实的发丝模型。图 8 展示了两个有代表性的比较结果。可以看出,PIFuHD 中采用的像素级隐函数无法充分描绘复杂的头发,导致结果过于光滑,没有局部细节,甚至没有合理的全局结构。Dynamic Hair 可以用较少的细节产生更合理的结果,而且其结果中的头发生长趋势可以很好地匹配输入图像,但许多局部结构细节 (例如层次结构) 无法捕获,特别是对于复杂的发型。相比之下,本文的方法可以适应不同的发型,甚至是极端复杂的结构,并充分利用全局特征和局部细节,生成高保真、高分辨率的具有更多细节的 3D 头发模型。

图片

以上就是《真的有这么丝滑:3D头发建模新方法NeuralHDHair,浙大、ETH Zurich、CityU联合出品》的详细内容,更多关于模型,3D的资料请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
康奈尔计算学院院长Kavita Bala:「元宇宙」算什么?上帝之眼或将通过 AI 诞生康奈尔计算学院院长Kavita Bala:「元宇宙」算什么?上帝之眼或将通过 AI 诞生
上一篇
康奈尔计算学院院长Kavita Bala:「元宇宙」算什么?上帝之眼或将通过 AI 诞生
是兄弟就来找ChatGPT漏洞,OpenAI:最高赏金2万刀
下一篇
是兄弟就来找ChatGPT漏洞,OpenAI:最高赏金2万刀
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    17次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    30次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    32次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    37次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    38次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码