大模型能自己「写」论文了,还带公式和参考文献,试用版已上线
从现在开始,我们要努力学习啦!今天我给大家带来《大模型能自己「写」论文了,还带公式和参考文献,试用版已上线》,感兴趣的朋友请继续看下去吧!下文中的内容我们主要会涉及到等等知识点,如果在阅读本文过程中有遇到不清楚的地方,欢迎留言呀!我们一起讨论,一起学习!
近年来,随着各学科领域研究的进步,科学文献和数据呈爆炸式增长,使学术研究者从大量信息中发现有用的见解变得越来越困难。通常,人们借助搜索引擎来获取科学知识,但搜索引擎不能自主组织科学知识。
现在,来自 Meta AI 的研究团队提出了一种新的大型语言模型 Galactica,可以存储、组合和推理科学知识。
- 论文地址:https://galactica.org/static/paper.pdf
- 试用地址:https://galactica.org/
Galactica 模型有多强大呢,它可以自己总结归纳出一篇综述论文:
也可以生成词条的百科查询:
对所提问题作出知识性的回答:
这些任务对于人类学者来说尚且是具有挑战性的任务,但 Galactica 却很好地完成了。图灵奖得主 Yann LeCun 也在推特上发文称赞:
我们来看一下 Galactica 模型的具体细节。
模型概述
Galactica 模型是在大量的论文、参考资料、知识库和许多其他来源的科学语料库上进行训练的,包括超过 4800 万篇论文、教科书和讲义、数百万种化合物和蛋白质知识、科学网站、百科全书等。与依赖于未经整理的、基于网络爬虫文本的现有语言模型不同,Galactica 训练所用的语料库是高质量且经过高度整理的。该研究在不过拟合的前提下对模型进行多个 epoch 的训练,其中在上游和下游任务上的性能通过使用重复的 token 得到改善。
Galactica 的性能在一系列科学任务上优于现有模型。在 LaTeX 方程式等技术知识的探索任务上,Galactica 与 GPT-3 的性能是 68.2% VS 49.0%。Galactica 在推理方面也表现出色,在数学 MMLU 基准上的表现显著优于 Chinchilla。
尽管没有接受过通用语料库的训练,Galactica 在 BIG-bench 上的性能也优于 BLOOM 和 OPT-175B。此外,它还在 PubMedQA 和 MedMCQA 开发等下游任务上创下了 77.6% 和 52.9% 的性能新高。
简单来说,该研究将逐步推理封装在特殊的 token 中,以模仿内部工作原理。这允许研究人员使用自然语言与模型进行交互,下图是 Galactica 的试用界面。
值得一提的是,除了文本生成,Galactica 还可以执行涉及化学公式和蛋白质序列的多模态任务。这将为药物发现领域做出贡献。
实现细节
本文的语料库包含 1060 亿个 token,这些 token 来自论文、参考文献、百科全书以及其他科学资料。可以说该研究将自然语言资源(论文、参考书)与自然界中的序列(蛋白质序列、化学形式)都囊括了。表 1 和表 2 中显示了语料库的细节。
语料库有了,接下来是对数据怎么操作。一般来讲,对 tokenization 的设计是非常重要的。例如,蛋白质序列是根据氨基酸残基来编写的,那么基于字符的 tokenization 是合适的。为了实现 tokenization,该研究对不同的模态进行了专门的 token 化。具体表现在(包括但不仅限于):
- 引用:用特殊的参考 token[START_REF]和 [END_REF] 来包装引用;
- 逐步推理:用 working memory token 来封装逐步推理,模拟内部 working memory 上下文;
- 数字:把数字分成单独的 token。例如, 737612.62 → 7,3,7,6,1,2,.,6,2;
- SMILES 公式:用 [START_SMILES] 和[END_SMILES]包装序列,并应用基于字符的 tokenization。同样,该研究使用 [START_I_SMILES] 和[END_I_SMILES]来表示异构体 SMILES。例如:C(C(=O)O)N→C,(,C,(,=,O,),O,),N;
- DNA 序列:应用一种基于字符的 tokenization,将每个核苷酸碱基视为一个 token,其中起始 token 为 [START_DNA] 和[END_DNA]。例如,CGGTACCCTC→C, G, G, T, A, C, C, C, T, C。
如下图 4 显示了对一篇论文的引用进行处理的示例。在处理引用时使用全局标识符和特殊 token[START_REF]和 [END_REF] 来表示引用的地方。
数据集处理好之后,接下来就是怎么实现。Galactica 在 Transformer 架构的基础上进行了以下修改:
- GeLU 激活:将 GeLU 激活用于各种大小的模型;
- 上下文窗口:对于不同大小的模型,使用 2048 长度的上下文窗口;
- 无偏置:遵循 PaLM,在密集内核或层规范中不使用偏置;
- 学习位置嵌入:学习位置嵌入用于模型;
- 词汇表:使用 BPE 构建一个包含 50k token 的词汇表。
表 5 列出了不同大小模型以及训练超参数。
实验
重复的 token 被认为是无害的
从图 6 可以看出,在经过四个 epoch 的训练之后,验证损失继续下降。拥有 120B 参数的模型在第五个 epoch 开始时才开始过拟合。这是出乎意料的,因为现有的研究表明重复的 token 可能对性能有害。该研究还发现,30B 和 120B 的模型在 epoch-wise 后表现出双下降效应,即验证损失达到平稳(或上升),然后是下降。这种效果在每个 epoch 后都变得更强,最明显的是 120B 模型在训练结束时。
图 8 结果显示实验没有出现过拟合迹象,这表明重复 token 能够提高下游和上游任务性能。
其他结果
键入公式太慢了,现在用提示就能生成 LaTeX:
在化学反应中,要求 Galactica 在化学方程 LaTeX 中预测反应的产物,模型仅根据反应物就能进行推理,结果如下:
表 7 中报告了一些其他结果:
Galactica 的推理能力。该研究首先在 MMLU mathematics 基准上进行评估,并在表 8 中报告了评估结果。Galactica 与较大的基础模型相比表现强劲,并且使用 token 似乎可以提高 Chinchilla 的性能,即使对于较小的 30B Galactica 模型也是如此。
该研究还对 MATH 数据集进行了评估,以进一步探索 Galactica 的推理能力:
从实验结果可以得出:Galactica 在思维链和提示方面都大大优于基础 PaLM 模型。这表明 Galactica 在处理数学任务上是个更好的选择。
在下游任务的评估结果如表 10 所示。Galactica 显着优于其他语言模型,并且在大多数任务中优于更大的模型(Gopher 280B)。与 Chinchilla 相比,性能表现差异更大,Chinchilla 在子集任务上似乎更强:特别是高中科目以及数学较少、记忆密集型任务。相比之下,Galactica 往往在数学和研究生水平的任务中表现更好。
该研究还评估了 Chinchilla 在给定输入上下文的情况下预测引用的能力,这是对 Chinchilla 组织科学文献能力的一个重要测试。结果如下:
更多实验内容,请参考原论文。
理论要掌握,实操不能落!以上关于《大模型能自己「写」论文了,还带公式和参考文献,试用版已上线》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

- 上一篇
- 学习ChatGPT,AI绘画引入人类反馈会怎样?

- 下一篇
- prompt攻防战!哥伦比亚大学提出BPE造词法,可绕过审核机制,DALL-E 2已中招
-
- 科技周边 · 人工智能 | 6小时前 |
- DeepSeek模型加密技术全解析
- 116浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- AI纹理工具搭配豆包,快速生成高质量纹理
- 184浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- PerplexityAI代码搜索与语法解析详解
- 224浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 2025年AI剪辑工具推荐与对比分析
- 309浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- AI备份工具怎么和豆包一起用?
- 481浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 豆包AI助你轻松掌握Python协程
- 197浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 易采集EasySpider:开源AI爬虫工具推荐
- 490浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- Perplexity+GoogleSheets实时数据填充教程
- 150浏览 收藏
-
- 科技周边 · 人工智能 | 7小时前 |
- Diffusers图像生成教程:扩散模型推理详解
- 404浏览 收藏
-
- 科技周边 · 人工智能 | 7小时前 |
- ChatGPT个性化设置教程
- 309浏览 收藏
-
- 科技周边 · 人工智能 | 7小时前 |
- 豆包AI是什么?功能特点详解
- 370浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 510次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 边界AI平台
- 探索AI边界平台,领先的智能AI对话、写作与画图生成工具。高效便捷,满足多样化需求。立即体验!
- 407次使用
-
- 免费AI认证证书
- 科大讯飞AI大学堂推出免费大模型工程师认证,助力您掌握AI技能,提升职场竞争力。体系化学习,实战项目,权威认证,助您成为企业级大模型应用人才。
- 419次使用
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 555次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 654次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 561次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览