当前位置:首页 > 文章列表 > 文章 > python教程 > Pandas统计字典列首元素非空数

Pandas统计字典列首元素非空数

2025-08-20 20:33:32 0浏览 收藏

本文详细介绍了如何利用 Pandas 统计 DataFrame 字典列中列表首个元素的非缺失值数量,旨在帮助读者更有效地处理复杂数据结构,提升数据分析和清洗效率。针对 DataFrame 中包含字典,且字典值为列表的列,文章提供了两种实用方法:一是利用列表推导式结合 `pd.notna()` 函数,快速提取并统计非缺失值;二是巧妙运用 `Series.explode()`、`Series.str.get()` 和 `DataFrameGroupBy.count()` 函数,灵活处理更复杂的数据结构。通过示例代码,深入解析了每种方法的原理、适用场景以及注意事项,助力读者在实际应用中选择最佳方案。掌握这些技巧,能有效解决数据分析中遇到的实际问题。

使用 Pandas 统计 DataFrame 字典列中列表首个元素的非缺失值数量

本文介绍了如何使用 Pandas 处理包含字典和列表的 DataFrame 列,并统计特定键(例如 'list_A')对应的列表中,首个元素的非缺失值(非 NaN)的数量。通过示例代码,详细展示了两种实现方法,并解释了其原理和适用场景。掌握这些技巧,可以更有效地处理复杂数据结构,进行数据分析和清洗。

在数据分析中,经常会遇到 DataFrame 的某一列包含复杂的数据结构,例如字典,而字典的值又是一个列表。针对这种数据,我们需要提取特定信息进行统计分析。本文将介绍如何使用 Pandas 统计 DataFrame 字典列中列表首个元素的非缺失值数量。

示例数据

首先,我们创建一个包含字典和列表的 DataFrame:

import pandas as pd

data = [{"list_A": [2.93, 4.18, 4.18, None, 1.57, 1.57, 3.92, 6.27, 2.09, 3.14, 0.42, 2.09],
         "list_B": [820, 3552, 7936, None, 2514, 4035, 6441, 15379, 2167, 6147, 3322, 1177]},
        {"list_A": [2.51, 3.58, 3.58, None, 1.34, 1.34, 3.36, 5.37, 1.79, 2.69, 0.36, 1.79],
         "list_B": [820, 3552, 7936, None, 2514, 4035, 6441, 15379, 2167, 6147, 3322, 1177]},
        {"list_A": [None, 5.94, 5.94, None, 2.23, 2.23, 5.57, 8.9, 2.97, 4.45, 0.59, 2.97],
         "list_B": [820, 3552, 7936, None, 2514, 4035, 6441, 15379, 2167, 6147, 3322, 1177]}]

# 创建一个名为 "column_dic" 的列的 DataFrame
df = pd.DataFrame({"column_dic": data})

print(df)

我们的目标是创建一个新列 count_first_item,该列包含 column_dic 中每个字典的 list_A 列表中,第一个元素的非缺失值数量。

方法一:使用列表推导式和 pd.notna()

第一种方法是使用列表推导式来提取每个字典中 list_A 的第一个元素,然后使用 pd.notna() 函数判断是否为非缺失值,最后使用 sum() 函数统计非缺失值的数量。

import numpy as np

df['count_first_item'] = [pd.notna([y['list_A'][0] for y in x if isinstance(y, dict)]).sum()
                          for x in df['column_dic']]
print (df)

这段代码首先使用列表推导式 [y['list_A'][0] for y in x] 从 column_dic 列的每个字典中提取 list_A 的第一个元素。isinstance(y, dict)用于确保y是字典类型,避免出现错误。然后,pd.notna() 函数判断每个元素是否为非缺失值,返回一个布尔值数组。最后,sum() 函数将布尔值数组中的 True 值(代表非缺失值)的数量加起来,得到非缺失值的总数。

方法二:使用 Series.explode()、Series.str.get() 和 DataFrameGroupBy.count()

第二种方法使用 Series.explode() 函数将 column_dic 列中的列表展开,然后使用 Series.str.get() 函数提取 list_A 的值,再使用 str[0] 提取第一个元素,最后使用 DataFrameGroupBy.count() 函数按组统计非缺失值的数量。

df['count_first_item'] = (df['column_dic'].explode().str.get('list_A').str[0]
                                          .groupby(level=0).count())
print (df)

这段代码首先使用 df['column_dic'].explode() 将 DataFrame 展开,使得每个字典成为单独的一行。然后,str.get('list_A') 提取每个字典中 list_A 对应的值,str[0] 提取 list_A 列表中的第一个元素。最后,groupby(level=0).count() 按照原始 DataFrame 的索引(level=0)进行分组,并统计每组中非缺失值的数量。

注意事项

  • pd.notna() 函数用于判断是否为非缺失值,如果数据中包含其他类型的缺失值(例如空字符串),需要使用其他方法进行判断。
  • Series.explode() 函数会将列表展开成多行,如果列表长度不一致,可能会导致数据错位。
  • 如果字典中不存在 list_A 键,Series.str.get('list_A') 会返回 NaN 值,需要注意处理。

总结

本文介绍了两种使用 Pandas 统计 DataFrame 字典列中列表首个元素的非缺失值数量的方法。第一种方法使用列表推导式和 pd.notna() 函数,代码简洁易懂,适用于简单的数据结构。第二种方法使用 Series.explode()、Series.str.get() 和 DataFrameGroupBy.count() 函数,代码更灵活,适用于复杂的数据结构。在实际应用中,可以根据具体情况选择合适的方法。

理论要掌握,实操不能落!以上关于《Pandas统计字典列首元素非空数》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

心遇邀请码填写方法及位置详解心遇邀请码填写方法及位置详解
上一篇
心遇邀请码填写方法及位置详解
HTML分页实现与页码导航设计解析
下一篇
HTML分页实现与页码导航设计解析
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3193次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3405次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3436次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4543次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3814次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码