Pandas统计字典列首元素非空数
本文详细介绍了如何利用 Pandas 统计 DataFrame 字典列中列表首个元素的非缺失值数量,旨在帮助读者更有效地处理复杂数据结构,提升数据分析和清洗效率。针对 DataFrame 中包含字典,且字典值为列表的列,文章提供了两种实用方法:一是利用列表推导式结合 `pd.notna()` 函数,快速提取并统计非缺失值;二是巧妙运用 `Series.explode()`、`Series.str.get()` 和 `DataFrameGroupBy.count()` 函数,灵活处理更复杂的数据结构。通过示例代码,深入解析了每种方法的原理、适用场景以及注意事项,助力读者在实际应用中选择最佳方案。掌握这些技巧,能有效解决数据分析中遇到的实际问题。
本文介绍了如何使用 Pandas 处理包含字典和列表的 DataFrame 列,并统计特定键(例如 'list_A')对应的列表中,首个元素的非缺失值(非 NaN)的数量。通过示例代码,详细展示了两种实现方法,并解释了其原理和适用场景。掌握这些技巧,可以更有效地处理复杂数据结构,进行数据分析和清洗。
在数据分析中,经常会遇到 DataFrame 的某一列包含复杂的数据结构,例如字典,而字典的值又是一个列表。针对这种数据,我们需要提取特定信息进行统计分析。本文将介绍如何使用 Pandas 统计 DataFrame 字典列中列表首个元素的非缺失值数量。
示例数据
首先,我们创建一个包含字典和列表的 DataFrame:
import pandas as pd data = [{"list_A": [2.93, 4.18, 4.18, None, 1.57, 1.57, 3.92, 6.27, 2.09, 3.14, 0.42, 2.09], "list_B": [820, 3552, 7936, None, 2514, 4035, 6441, 15379, 2167, 6147, 3322, 1177]}, {"list_A": [2.51, 3.58, 3.58, None, 1.34, 1.34, 3.36, 5.37, 1.79, 2.69, 0.36, 1.79], "list_B": [820, 3552, 7936, None, 2514, 4035, 6441, 15379, 2167, 6147, 3322, 1177]}, {"list_A": [None, 5.94, 5.94, None, 2.23, 2.23, 5.57, 8.9, 2.97, 4.45, 0.59, 2.97], "list_B": [820, 3552, 7936, None, 2514, 4035, 6441, 15379, 2167, 6147, 3322, 1177]}] # 创建一个名为 "column_dic" 的列的 DataFrame df = pd.DataFrame({"column_dic": data}) print(df)
我们的目标是创建一个新列 count_first_item,该列包含 column_dic 中每个字典的 list_A 列表中,第一个元素的非缺失值数量。
方法一:使用列表推导式和 pd.notna()
第一种方法是使用列表推导式来提取每个字典中 list_A 的第一个元素,然后使用 pd.notna() 函数判断是否为非缺失值,最后使用 sum() 函数统计非缺失值的数量。
import numpy as np df['count_first_item'] = [pd.notna([y['list_A'][0] for y in x if isinstance(y, dict)]).sum() for x in df['column_dic']] print (df)
这段代码首先使用列表推导式 [y['list_A'][0] for y in x] 从 column_dic 列的每个字典中提取 list_A 的第一个元素。isinstance(y, dict)用于确保y是字典类型,避免出现错误。然后,pd.notna() 函数判断每个元素是否为非缺失值,返回一个布尔值数组。最后,sum() 函数将布尔值数组中的 True 值(代表非缺失值)的数量加起来,得到非缺失值的总数。
方法二:使用 Series.explode()、Series.str.get() 和 DataFrameGroupBy.count()
第二种方法使用 Series.explode() 函数将 column_dic 列中的列表展开,然后使用 Series.str.get() 函数提取 list_A 的值,再使用 str[0] 提取第一个元素,最后使用 DataFrameGroupBy.count() 函数按组统计非缺失值的数量。
df['count_first_item'] = (df['column_dic'].explode().str.get('list_A').str[0] .groupby(level=0).count()) print (df)
这段代码首先使用 df['column_dic'].explode() 将 DataFrame 展开,使得每个字典成为单独的一行。然后,str.get('list_A') 提取每个字典中 list_A 对应的值,str[0] 提取 list_A 列表中的第一个元素。最后,groupby(level=0).count() 按照原始 DataFrame 的索引(level=0)进行分组,并统计每组中非缺失值的数量。
注意事项
- pd.notna() 函数用于判断是否为非缺失值,如果数据中包含其他类型的缺失值(例如空字符串),需要使用其他方法进行判断。
- Series.explode() 函数会将列表展开成多行,如果列表长度不一致,可能会导致数据错位。
- 如果字典中不存在 list_A 键,Series.str.get('list_A') 会返回 NaN 值,需要注意处理。
总结
本文介绍了两种使用 Pandas 统计 DataFrame 字典列中列表首个元素的非缺失值数量的方法。第一种方法使用列表推导式和 pd.notna() 函数,代码简洁易懂,适用于简单的数据结构。第二种方法使用 Series.explode()、Series.str.get() 和 DataFrameGroupBy.count() 函数,代码更灵活,适用于复杂的数据结构。在实际应用中,可以根据具体情况选择合适的方法。
理论要掌握,实操不能落!以上关于《Pandas统计字典列首元素非空数》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

- 上一篇
- 心遇邀请码填写方法及位置详解

- 下一篇
- HTML分页实现与页码导航设计解析
-
- 文章 · python教程 | 10分钟前 | Python SpeechRecognition 实时语音转文字 pyaudio 语音识别API
- Python语音转文字教程:SpeechRecognition库使用详解
- 199浏览 收藏
-
- 文章 · python教程 | 49分钟前 |
- Python发邮件带附件教程详解
- 315浏览 收藏
-
- 文章 · python教程 | 54分钟前 |
- Python图像处理:Pillow库高级用法解析
- 192浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python协程怎么实现?
- 175浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python正则匹配浮点数的写法大全
- 383浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python数据标准化方法及sklearn应用
- 464浏览 收藏
-
- 文章 · python教程 | 1小时前 | 异常处理 命令行参数 跨平台兼容 Python脚本调用 subprocess.run()
- Python脚本嵌套调用技巧全解析
- 414浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python读取DICOM医疗数据全攻略
- 441浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PyCharm英文界面设置教程
- 372浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 217次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 217次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 213次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 218次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 239次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览