当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 文件更小,质量更高,大火的Stable Diffusion还能压缩图像?

文件更小,质量更高,大火的Stable Diffusion还能压缩图像?

来源:51CTO.COM 2023-04-17 07:07:45 0浏览 收藏

今日不肯埋头,明日何以抬头!每日一句努力自己的话哈哈~哈喽,今天我将给大家带来一篇《文件更小,质量更高,大火的Stable Diffusion还能压缩图像?》,主要内容是讲解等等,感兴趣的朋友可以收藏或者有更好的建议在评论提出,我都会认真看的!大家一起进步,一起学习!

近来,Stable Diffusion 成为一个新兴的研究方向。一位名为 Matthias Bühlmann 的博主尝试实验探究这种模型的强大功能,结果发现 Stable Diffusion 是一个非常强大的有损图像压缩编解码器。他撰写了一篇博客描述了这个实验分析过程,以下是博客原文。

首先 Matthias Bühlmann 给出在高压缩因子条件下,Stable Diffusion 方法与 JPG、WebP 的压缩结果,所有结果都是 512x512 像素的分辨率:

图片

旧金山风景图,从左至右:JPG (6.16kB), WebP (6.80kB), Stable Diffusion: (4.96kB)。

图片

糖果店,从左至右:JPG (5.68kB), WebP (5.71kB), Stable Diffusion (4.98kB)。

图片

动物照片,从左至右:JPG (5.66kB), WebP (6.74kB), Stable Diffusion (4.97kB)。

这些例子明显表明,与 JPG 和 WebP 相比,使用 Stable Diffusion 压缩图像可以在更小的文件大小下保留更出色的图像质量。

探究实验

Matthias Bühlmann 分析了一下其中的工作原理,Stable Diffusion 使用三个串联的训练好的人工神经网络:

  • 变分自编码器(Variational Auto Encoder,VAE)
  • U-Net
  • 文本编码器(Text Encoder)

VAE 将图像空间中的图像编码和解码为某种潜在的空间表征。源图像(512 x 512,3x8 或 4x8 bit)的潜在空间表征会分辨率更低(64 x 64)、精度更高(4x32 bit)。

VAE 在训练过程中自行学习,随着模型的逐步训练,不同版本模型的潜在空间表征看起来可能会有所不同,例如 Stable Diffusion v1.4 的潜在空间表征如下(重映射为 4-channel 彩色图像):

图片

当重新扩展和将潜在特征解释为颜色值(使用 alpha channel)时,图像的主要特征仍然可见,并且 VAE 还将更高分辨率的特征编码到像素值中。

例如,通过一次 VAE 编码 / 解码 roundtrip 得到如下结果:

图片

值得注意的是,这种 roundtrip 不是无损的。例如,图中蓝色带子上白色的字在解码后可读性稍差了一些。Stable Diffusion v1.4 模型的 VAE 一般不太擅长表征小型文本和人脸。

我们知道,Stable Diffusion 的主要用途是根据文本描述生成图像,这就要求该模型要对图像的潜在空间表征进行操作。该模型使用经过训练的 U-Net 迭代地对潜在空间图像进行去噪,输出它在噪声中「看到」(预测)的内容,类似于我们有时把云看成某种形状或面孔。在迭代去噪步骤中,第三个 ML 模型(文本编码器)指导 U-Net 来尝试看到不同的信息。

Matthias Bühlmann 分析了 VAE 生成的潜在表征(latent representation)是如何进行有效压缩的。他发现对 VAE 中的潜在表征进行采样或对潜在表征应用已有的有损图像压缩方法,都会极大地降低重构图像的质量,而 VAE 解码过程似乎对潜在表征的质量鲁棒性较高。

Matthias Bühlmann 将潜在表征从浮点数量化为 8-bit 无符号整数,结果发现只有非常小的重构误差。如下图所示,左:32-bit 浮点潜在表征;中:ground truth;右:8-bit 整数潜在表征。

图片

他还发现通过 palette 和抖动算法进一步量化,得到的结果会出乎意料的好。然而,当直接使用 VAE 解码时,palettized 表征会导致一些可见的伪影:

图片

左:32-bit 潜在表征;中:8-bit 量化潜在表征;右:带有 Floyd-Steinberg 抖动的 palettized 8-bit 潜在表征

带有 Floyd-Steinberg 抖动的 palettized 表征引入了噪声,使解码结果失真。于是 Matthias Bühlmann 使用 U-Net 来去除抖动带来的噪声。经过 4 次迭代,重构结果在视觉上非常接近未量化的版本:

图片

重构结果(左:带有 Floyd-Steinberg 抖动的 palettized 表征;中:经过四次迭代去噪;右:Ground Truth)。

虽然结果非常好,但还是会引入一些伪影,例如上图中心形符号上的光泽阴影。

虽然从主观上看,Stable Diffusion 压缩图像的结果比 JPG 和 WebP 好很多,但从 PSNR、SSIM 等指标看,Stable Diffusion 并没有明显的优势。

如下图所示,虽然作为编解码器的 Stable Diffusion 在保留图像粒度方面比其他方法要好得多,但受压缩伪影的影响,图像中物体形状等特征可能会发生变化。

图片

左:JPG 压缩;中:Ground Truth;右:Stable Diffusion 压缩。

值得注意的是,当前的 Stable Diffusion v1.4 模型在压缩过程中无法很好地保留字体很小的文本信息和人脸特征,但 Stable Diffusion v1.5 模型在人脸生成方面有所改进。

图片

左:Ground Truth;中:经过 VAE roundtrip (32-bit 潜在特征) ;右:从 palettized 去噪 8-bit 潜在特征解码的结果。

博客发布后,Matthias Bühlmann 的实验分析引起了大家的讨论。

Matthias Bühlmann 自己认为 Stable Diffusion 的图像压缩效果比预期好,U-Net 似乎能够有效消除抖动引入的噪声。不过,Stable Diffusion 模型未来的版本可能不会再有这种图像压缩特性。

图片

然而有网友质疑道:「VAE 本身就被用于图像压缩」,例如基于 Transformer 的图像压缩方法 TIC 就用到了 VAE 架构,所以 Matthias Bühlmann 的实验似乎是大材小用了。

图片

对此,你有什么看法?

好了,本文到此结束,带大家了解了《文件更小,质量更高,大火的Stable Diffusion还能压缩图像?》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
人类没有足够的高质量语料给AI学了,2026年就用尽,网友:大型人类文本生成项目启动!人类没有足够的高质量语料给AI学了,2026年就用尽,网友:大型人类文本生成项目启动!
上一篇
人类没有足够的高质量语料给AI学了,2026年就用尽,网友:大型人类文本生成项目启动!
谷歌AI歌手震撼来袭!AudioLM简单听几秒,便能谱曲写歌
下一篇
谷歌AI歌手震撼来袭!AudioLM简单听几秒,便能谱曲写歌
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    514次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    499次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO  AI Mermaid 流程图:自然语言生成,文本驱动可视化创作
    AI Mermaid流程图
    SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
    74次使用
  • 搜获客笔记生成器:小红书医美爆款内容AI创作神器
    搜获客【笔记生成器】
    搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
    44次使用
  • iTerms:一站式法律AI工作台,智能合同审查起草与法律问答专家
    iTerms
    iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
    80次使用
  • TokenPony:AI大模型API聚合平台,一站式接入,高效稳定高性价比
    TokenPony
    TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
    12次使用
  • 迅捷AIPPT:AI智能PPT生成器,高效制作专业演示文稿
    迅捷AIPPT
    迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
    66次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码