当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 文件更小,质量更高,大火的Stable Diffusion还能压缩图像?

文件更小,质量更高,大火的Stable Diffusion还能压缩图像?

来源:51CTO.COM 2023-04-17 07:07:45 0浏览 收藏

今日不肯埋头,明日何以抬头!每日一句努力自己的话哈哈~哈喽,今天我将给大家带来一篇《文件更小,质量更高,大火的Stable Diffusion还能压缩图像?》,主要内容是讲解等等,感兴趣的朋友可以收藏或者有更好的建议在评论提出,我都会认真看的!大家一起进步,一起学习!

近来,Stable Diffusion 成为一个新兴的研究方向。一位名为 Matthias Bühlmann 的博主尝试实验探究这种模型的强大功能,结果发现 Stable Diffusion 是一个非常强大的有损图像压缩编解码器。他撰写了一篇博客描述了这个实验分析过程,以下是博客原文。

首先 Matthias Bühlmann 给出在高压缩因子条件下,Stable Diffusion 方法与 JPG、WebP 的压缩结果,所有结果都是 512x512 像素的分辨率:

图片

旧金山风景图,从左至右:JPG (6.16kB), WebP (6.80kB), Stable Diffusion: (4.96kB)。

图片

糖果店,从左至右:JPG (5.68kB), WebP (5.71kB), Stable Diffusion (4.98kB)。

图片

动物照片,从左至右:JPG (5.66kB), WebP (6.74kB), Stable Diffusion (4.97kB)。

这些例子明显表明,与 JPG 和 WebP 相比,使用 Stable Diffusion 压缩图像可以在更小的文件大小下保留更出色的图像质量。

探究实验

Matthias Bühlmann 分析了一下其中的工作原理,Stable Diffusion 使用三个串联的训练好的人工神经网络:

  • 变分自编码器(Variational Auto Encoder,VAE)
  • U-Net
  • 文本编码器(Text Encoder)

VAE 将图像空间中的图像编码和解码为某种潜在的空间表征。源图像(512 x 512,3x8 或 4x8 bit)的潜在空间表征会分辨率更低(64 x 64)、精度更高(4x32 bit)。

VAE 在训练过程中自行学习,随着模型的逐步训练,不同版本模型的潜在空间表征看起来可能会有所不同,例如 Stable Diffusion v1.4 的潜在空间表征如下(重映射为 4-channel 彩色图像):

图片

当重新扩展和将潜在特征解释为颜色值(使用 alpha channel)时,图像的主要特征仍然可见,并且 VAE 还将更高分辨率的特征编码到像素值中。

例如,通过一次 VAE 编码 / 解码 roundtrip 得到如下结果:

图片

值得注意的是,这种 roundtrip 不是无损的。例如,图中蓝色带子上白色的字在解码后可读性稍差了一些。Stable Diffusion v1.4 模型的 VAE 一般不太擅长表征小型文本和人脸。

我们知道,Stable Diffusion 的主要用途是根据文本描述生成图像,这就要求该模型要对图像的潜在空间表征进行操作。该模型使用经过训练的 U-Net 迭代地对潜在空间图像进行去噪,输出它在噪声中「看到」(预测)的内容,类似于我们有时把云看成某种形状或面孔。在迭代去噪步骤中,第三个 ML 模型(文本编码器)指导 U-Net 来尝试看到不同的信息。

Matthias Bühlmann 分析了 VAE 生成的潜在表征(latent representation)是如何进行有效压缩的。他发现对 VAE 中的潜在表征进行采样或对潜在表征应用已有的有损图像压缩方法,都会极大地降低重构图像的质量,而 VAE 解码过程似乎对潜在表征的质量鲁棒性较高。

Matthias Bühlmann 将潜在表征从浮点数量化为 8-bit 无符号整数,结果发现只有非常小的重构误差。如下图所示,左:32-bit 浮点潜在表征;中:ground truth;右:8-bit 整数潜在表征。

图片

他还发现通过 palette 和抖动算法进一步量化,得到的结果会出乎意料的好。然而,当直接使用 VAE 解码时,palettized 表征会导致一些可见的伪影:

图片

左:32-bit 潜在表征;中:8-bit 量化潜在表征;右:带有 Floyd-Steinberg 抖动的 palettized 8-bit 潜在表征

带有 Floyd-Steinberg 抖动的 palettized 表征引入了噪声,使解码结果失真。于是 Matthias Bühlmann 使用 U-Net 来去除抖动带来的噪声。经过 4 次迭代,重构结果在视觉上非常接近未量化的版本:

图片

重构结果(左:带有 Floyd-Steinberg 抖动的 palettized 表征;中:经过四次迭代去噪;右:Ground Truth)。

虽然结果非常好,但还是会引入一些伪影,例如上图中心形符号上的光泽阴影。

虽然从主观上看,Stable Diffusion 压缩图像的结果比 JPG 和 WebP 好很多,但从 PSNR、SSIM 等指标看,Stable Diffusion 并没有明显的优势。

如下图所示,虽然作为编解码器的 Stable Diffusion 在保留图像粒度方面比其他方法要好得多,但受压缩伪影的影响,图像中物体形状等特征可能会发生变化。

图片

左:JPG 压缩;中:Ground Truth;右:Stable Diffusion 压缩。

值得注意的是,当前的 Stable Diffusion v1.4 模型在压缩过程中无法很好地保留字体很小的文本信息和人脸特征,但 Stable Diffusion v1.5 模型在人脸生成方面有所改进。

图片

左:Ground Truth;中:经过 VAE roundtrip (32-bit 潜在特征) ;右:从 palettized 去噪 8-bit 潜在特征解码的结果。

博客发布后,Matthias Bühlmann 的实验分析引起了大家的讨论。

Matthias Bühlmann 自己认为 Stable Diffusion 的图像压缩效果比预期好,U-Net 似乎能够有效消除抖动引入的噪声。不过,Stable Diffusion 模型未来的版本可能不会再有这种图像压缩特性。

图片

然而有网友质疑道:「VAE 本身就被用于图像压缩」,例如基于 Transformer 的图像压缩方法 TIC 就用到了 VAE 架构,所以 Matthias Bühlmann 的实验似乎是大材小用了。

图片

对此,你有什么看法?

好了,本文到此结束,带大家了解了《文件更小,质量更高,大火的Stable Diffusion还能压缩图像?》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
人类没有足够的高质量语料给AI学了,2026年就用尽,网友:大型人类文本生成项目启动!人类没有足够的高质量语料给AI学了,2026年就用尽,网友:大型人类文本生成项目启动!
上一篇
人类没有足够的高质量语料给AI学了,2026年就用尽,网友:大型人类文本生成项目启动!
谷歌AI歌手震撼来袭!AudioLM简单听几秒,便能谱曲写歌
下一篇
谷歌AI歌手震撼来袭!AudioLM简单听几秒,便能谱曲写歌
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 扣子空间(Coze Space):字节跳动通用AI Agent平台深度解析与应用
    扣子-Space(扣子空间)
    深入了解字节跳动推出的通用型AI Agent平台——扣子空间(Coze Space)。探索其双模式协作、强大的任务自动化、丰富的插件集成及豆包1.5模型技术支撑,覆盖办公、学习、生活等多元应用场景,提升您的AI协作效率。
    13次使用
  • 蛙蛙写作:AI智能写作助手,提升创作效率与质量
    蛙蛙写作
    蛙蛙写作是一款国内领先的AI写作助手,专为内容创作者设计,提供续写、润色、扩写、改写等服务,覆盖小说创作、学术教育、自媒体营销、办公文档等多种场景。
    16次使用
  • AI代码助手:Amazon CodeWhisperer,高效安全的代码生成工具
    CodeWhisperer
    Amazon CodeWhisperer,一款AI代码生成工具,助您高效编写代码。支持多种语言和IDE,提供智能代码建议、安全扫描,加速开发流程。
    32次使用
  • 畅图AI:AI原生智能图表工具 | 零门槛生成与高效团队协作
    畅图AI
    探索畅图AI:领先的AI原生图表工具,告别绘图门槛。AI智能生成思维导图、流程图等多种图表,支持多模态解析、智能转换与高效团队协作。免费试用,提升效率!
    58次使用
  • TextIn智能文字识别:高效文档处理,助力企业数字化转型
    TextIn智能文字识别平台
    TextIn智能文字识别平台,提供OCR、文档解析及NLP技术,实现文档采集、分类、信息抽取及智能审核全流程自动化。降低90%人工审核成本,提升企业效率。
    66次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码