突破神经网络限制,量子蒙特卡洛研究新进展登Nature子刊
哈喽!今天心血来潮给大家带来了《突破神经网络限制,量子蒙特卡洛研究新进展登Nature子刊》,想必大家应该对科技周边都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习科技周边,千万别错过这篇文章~希望能帮助到你!
时隔四个月,ByteDance Research 与北京大学物理学院陈基课题组又一合作工作登上国际顶级刊物 Nature Communications:论文《 Towards the ground state of molecules via diffusion Monte Carlo on neural networks 》将神经网络与扩散蒙特卡洛方法结合,大幅提升神经网络方法在量子化学相关任务上的计算精度、效率以及体系规模,成为最新 SOTA。
- 论文链接:
https://www.nature.com/articles/s41467-023-37609-3 - 代码地址:
https://github.com/bytedance/jaqmc
简介
作者将基于神经网络的试探波函数运用于固定节点面的扩散蒙特卡洛方法 (Diffusion Monte Carlo, or DMC) ,用以精确计算具有不同电子特性的原子以及分子系统。
扩散蒙特卡洛方法是量子化学领域精确计算分子和材料基态能量的常用方法之一。通过与扩散蒙特卡洛方法结合,作者显著提高了量子化学中神经网络 SOTA 方法的计算精度与效率。此外作者还提出了一种基于经验线性关系的外推方法,大幅改善了分子结合能计算。总体而言,该计算框架作为求解量子多体问题的高精度方法,为化学分子性质的深入理解提供了更强大的工具。
基于神经网络的量子蒙特卡洛方法
2018 年以来,多个研究小组将神经网络运用于变分蒙特卡洛方法 (Variational Monte Carlo, or VMC) 中 [1,2,3],借助神经网络强大的表达能力,得到了更为精确的分子基态能量。本工作于 2022 年公开时,基于神经网络的变分蒙特卡洛方法中的 SOTA 工作是 DeepMind 于 2019 年提出的 FermiNet [2],能够在规模较小的体系上得到非常精确的结果。然而变分蒙特卡洛方法的精度受限于神经网络的表达能力,在处理较大体系时会有越来越明显的精度问题。此外该类方法在处理较大体系时收敛非常缓慢,对计算资源提出了巨大挑战。
扩散蒙特卡洛方法作为量子化学领域的经典高精度算法之一,具有精度高、可并行性好、适合进行大规模计算等良好的特性。此外扩散蒙特卡洛可以突破神经网络的表达能力限制,利用投影算法超越变分蒙特卡洛方法的精度。
本工作中,作者将 SOTA 的神经网络 (FermiNet) 作为试探波函数与扩散蒙特卡洛方法结合。新的计算方法相比于 FermiNet 显著提升了精度并减少了所需的计算步数。本工作中所设计并实现的扩散蒙特卡洛软件具有神经网络友好、GPU 友好、并行友好的特点,可以与广泛的神经网络波函数结合,自动提升其精度与效率。
计算结果
1. 原子
使用神经网络对大型分子体系进行量子蒙特卡洛计算时,由于算力限制,所能使用的神经网络的表达能力也会受到一定限制。为了模拟这一场景,作者使用了仅仅两层的神经网络来研究第二、三排的原子。计算结果显示随着体系变大,变分蒙特卡洛方法的精度愈来愈差,而扩散蒙特卡洛方法所带来的精度提升也愈来愈明显。
2. 分子
作者在一系列分子体系上也验证了基于神经网络的扩散蒙特卡洛方法的有效性,包括氮气分子,环丁二烯以及双水分子。在所测试的体系上均观察到了明显的计算精度提升。
3. 苯环及双苯环
本工作公开前,量子化学领域中基于变分蒙特卡洛的神经网络波函数方法只处理过 30 电子以内的小型分子。本工作首次将神经网络波函数方法应用于 42~84 个电子的体系,即苯环与双苯环。计算结果显示,扩散蒙特卡洛方法在精度上显著优于变分蒙特卡洛方法,同时可以用少一个数量级的计算步数达到相同或更优的精度。
4. 线性关系及外推方法
作者在考察神经网络的不同训练阶段所对应的能量时,在很多体系上均发现变分蒙特卡洛与扩散蒙特卡洛的计算结果具有经验性的线性关系(下左图)。使用该线性关系对双苯环的解离能计算进行外推,显著提升了计算精度,得到了吻合于化学实验的结果(下右图)。
结语与展望
本工作表明,基于神经网络的扩散蒙特卡洛方法在精度与效率上均优于变分蒙特卡洛方法。作者开源的扩散蒙特卡洛代码可以与量子化学领域不断推陈出新的神经网络 [4,5] 快速结合,实现对研究社区的赋能。此外扩散蒙特卡洛方法也可以与处理真实固体的周期性神经网络 [6]、带赝势的神经网络 [7] 等一系列方法结合,在相应任务上提升计算效果。
本篇关于《突破神经网络限制,量子蒙特卡洛研究新进展登Nature子刊》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!

- 上一篇
- 时间序列机器学习数据集的非常规拆分技术

- 下一篇
- ChatGPT 更聪明了!OpenAI 推出 GPT-4 大型语言模型:在诸多测试中表现比人类都好
-
- 科技周边 · 人工智能 | 4小时前 | 字节跳动 数据中心
- 字节跳动计划在巴西建数据中心
- 345浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- UFO²—微软新推Windows桌面Agent
- 372浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- Pad.ws—AI开发神器,白板与代码编辑器完美融合
- 328浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 3月纯电动车销量:ModelY夺冠,小米SU7第五
- 125浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 |
- 即梦ai社交媒体导出教程及平台格式适配
- 282浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 16次使用
-
- PetGPT
- SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
- 15次使用
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 43次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 44次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 38次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览