当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 一块GPU跑ChatGPT体量模型,AI绘图又一神器ControlNet

一块GPU跑ChatGPT体量模型,AI绘图又一神器ControlNet

来源:51CTO.COM 2023-04-27 21:37:32 0浏览 收藏

偷偷努力,悄无声息地变强,然后惊艳所有人!哈哈,小伙伴们又来学习啦~今天我将给大家介绍《一块GPU跑ChatGPT体量模型,AI绘图又一神器ControlNet》,这篇文章主要会讲到等等知识点,不知道大家对其都有多少了解,下面我们就一起来看一吧!当然,非常希望大家能多多评论,给出合理的建议,我们一起学习,一起进步!

目录

  1. Transformer models: an introduction and catalog
  2. High-throughout Generative Inference of Large Language Models with a Single GPU
  3. Temporal Domain Generalization with Drift-Aware Dynamic Neural Networks
  4. Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning
  5. A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT
  6. Adding Conditional Control to Text-to-Image Diffusion Models
  7. EVA3D: Compositional 3D Human Generation from 2D image Collections
  8. ArXiv Weekly Radiostation:NLP、CV、ML 更多精选论文(附音频)

论文 1:Transformer models: an introduction and catalog

  • 作者:Xavier Amatriain
  • 论文地址:https://arxiv.org/pdf/2302.07730.pdf

摘要:自 2017 年提出至今,Transformer 模型已经在自然语言处理、计算机视觉等其他领域展现了前所未有的实力,并引发了 ChatGPT 这样的技术突破,人们也提出了各种各样基于原始模型的变体。

由于学界和业界不断提出基于 Transformer 注意力机制的新模型,我们有时很难对这一方向进行归纳总结。近日,领英 AI 产品战略负责人 Xavier Amatriain 的一篇综述性文章或许可以帮助我们解决这一问题。

图片

推荐:本文的目标是为最流行的 Transformer 模型提供一个比较全面但简单的目录和分类,还介绍了 Transformer 模型中最重要的方面和创新。

论文 2:High-throughout Generative Inference of Large Language Models with a Single GPU

  • 作者:Ying Sheng 等
  • 论文地址:https://github.com/FMInference/FlexGen/blob/main/docs/paper.pdf

摘要:传统上,大语言模型(LLM)推理的高计算和内存要求使人们必须使用多个高端 AI 加速器进行训练。本研究探索了如何将 LLM 推理的要求降低到一个消费级 GPU 并实现实用性能。、

近日,来自斯坦福大学、UC Berkeley、苏黎世联邦理工学院、Yandex、莫斯科国立高等经济学院、Meta、卡耐基梅隆大学等机构的新研究提出了 FlexGen,这是一种用于运行有限 GPU 内存的 LLM 的高吞吐量生成引擎。下图为 FlexGen 的设计思路, 利用块调度来重用权重并将 I/O 与计算重叠,如下图 (b) 所示,而其他基线系统使用低效的逐行调度,如下图 (a) 所示。

推荐:跑 ChatGPT 体量模型,从此只需一块 GPU:加速百倍的方法来了。

论文 3:Temporal Domain Generalization with Drift-Aware Dynamic Neural Networks

  • 作者:Guangji Bai 等
  • 论文地址:https://arxiv.org/pdf/2205.10664.pdf

摘要:在领域泛化 (Domain Generalization, DG) 任务中,当领域的分布随环境连续变化时,如何准确地捕捉该变化以及其对模型的影响是非常重要但也极富挑战的问题。

为此,来自 Emory 大学的赵亮教授团队,提出了一种基于贝叶斯理论的时间域泛化框架 DRAIN,利用递归网络学习时间维度领域分布的漂移,同时通过动态神经网络以及图生成技术的结合最大化模型的表达能力,实现对未来未知领域上的模型泛化及预测。

本工作已入选 ICLR 2023 Oral (Top 5% among accepted papers)。如下为 DRAIN 总体框架示意图。

图片

推荐:漂移感知动态神经网络加持,时间域泛化新框架远超领域泛化 & 适应方法。

论文 4:Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning

  • 作者:Ying Da Wang 等
  • 论文地址:https://www.nature.com/articles/s41467-023-35973-8

摘要:为了保障能源供应和应对气候变化,人们的焦点从化石燃料转向清洁和可再生能源,氢以其高能密度和清洁低碳的能源属性可以在能源转型变革中发挥重要作用。氢燃料电池,尤其是质子交换膜燃料电池 (PEMFC),由于高能量转换效率和零排放操作,成为这场绿色革命的关键。

PEMFC 通过电化学过程将氢转化为电能,反应的唯一副产品是纯水。然而,如果水不能正常流出电池,随后「淹没」系统,PEMFC 可能会变得低效。到目前为止,由于燃料电池体积非常小且结构非常复杂,工程师们很难理解燃料电池内部排水或积水的精确方式。

近日,悉尼新南威尔士大学的研究团队开发了一种深度学习算法(DualEDSR),来提高对 PEMFC 内部情况的理解,可以从较低分辨率的 X 射线微计算机断层扫描中生成高分辨率的建模图像。该工艺已经在单个氢燃料电池上进行了测试,可以对其内部进行精确建模,并有可能提高其效率。下图展示了本研究中生成的 PEMFC 域。

图片

推荐:深度学习对燃料电池内部进行大规模物理精确建模,助力电池性能提升。

论文 5:A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT

  • 作者:Ce Zhou 等
  • 论文地址:https://arxiv.org/pdf/2302.09419.pdf

摘要:这篇近百页的综述梳理了预训练基础模型的演变史,让我们看到 ChatGPT 是怎么一步一步走向成功的。

推荐:从 BERT 到 ChatGPT,百页综述梳理预训练大模型演变史。

论文 6:Adding Conditional Control to Text-to-Image Diffusion Models

  • 作者:Lvmin Zhang 等
  • 论文地址:https://arxiv.org/pdf/2302.05543.pdf

摘要:本文提出了一种端到端的神经网络架构 ControlNet,该架构可以通过添加额外条件来控制扩散模型(如 Stable Diffusion),从而改善图生图效果,并能实现线稿生成全彩图、生成具有同样深度结构的图、通过手部关键点还能优化手部的生成等。

图片

推荐:AI 降维打击人类画家,文生图引入 ControlNet,深度、边缘信息全能复用。

论文 7:EVA3D: Compositional 3D Human Generation from 2D image Collections

  • 作者:Fangzhou Hong 等
  • 论文地址:https://arxiv.org/abs/2210.04888

摘要:在 ICLR 2023 上,南洋理工大学 - 商汤科技联合研究中心 S-Lab 团队提出了首个从二维图像集合中学习高分辨率三维人体生成的方法 EVA3D。得益于 NeRF 提供的可微渲染,近期的三维生成模型已经在静止物体上达到了很惊艳的效果。但是在人体这种更加复杂且可形变的类别上,三维生成依旧有很大的挑战。

本文提出了一个高效的组合的人体 NeRF 表达,实现了高分辨率(512x256)的三维人体生成,并且没有使用超分模型。EVA3D 在四个大型人体数据集上均大幅超越了已有方案,代码已开源。

图片

推荐:ICLR 2023 Spotlight | 2D 图像脑补 3D 人体,衣服随便搭,还能改动作。

ArXiv Weekly Radiostation

机器之心联合由楚航、罗若天、梅洪源发起的ArXiv Weekly Radiostation,在 7 Papers 的基础上,精选本周更多重要论文,包括NLP、CV、ML领域各10篇精选,并提供音频形式的论文摘要简介,详情如下:

7 NLP Papers

本周 10 篇 NLP 精选论文是:

1. Active Prompting with Chain-of-Thought for Large Language Models.  (from Tong Zhang)

2. Prosodic features improve sentence segmentation and parsing.  (from Mark Steedman)

3. ProsAudit, a prosodic benchmark for self-supervised speech models.  (from Emmanuel Dupoux)

4. Exploring Social Media for Early Detection of Depression in COVID-19 Patients.  (from Jie Yang)

5. Federated Nearest Neighbor Machine Translation.  (from Enhong Chen)

6. SPINDLE: Spinning Raw Text into Lambda Terms with Graph Attention.  (from Michael Moortgat)

7. A Neural Span-Based Continual Named Entity Recognition Model.  (from Qingcai Chen)

10 CV Papers

本周 10 篇 CV 精选论文是:

1. MERF: Memory-Efficient Radiance Fields for Real-time View Synthesis in Unbounded Scenes.  (from Richard Szeliski, Andreas Geiger)

2. Designing an Encoder for Fast Personalization of Text-to-Image Models.  (from Daniel Cohen-Or)

3. Teaching CLIP to Count to Ten.  (from Michal Irani)

4. Evaluating the Efficacy of Skincare Product: A Realistic Short-Term Facial Pore Simulation.  (from Weisi Lin)

5. Real-Time Damage Detection in Fiber Lifting Ropes Using Convolutional Neural Networks.  (from Moncef Gabbouj)

6. Embedding Fourier for Ultra-High-Definition Low-Light Image Enhancement.  (from Chen Change Loy)

7. Region-Aware Diffusion for Zero-shot Text-driven Image Editing.  (from Changsheng Xu)

8. Side Adapter Network for Open-Vocabulary Semantic Segmentation.  (from Xiang Bai)

9. VoxFormer: Sparse Voxel Transformer for Camera-based 3D Semantic Scene Completion.  (from Sanja Fidler)

10. Object-Centric Video Prediction via Decoupling of Object Dynamics and Interactions.  (from Sven Behnke)

10 ML Papers

本周 10 篇 ML 精选论文是:

1. normflows: A PyTorch Package for Normalizing Flows.  (from Bernhard Schölkopf)

2. Concept Learning for Interpretable Multi-Agent Reinforcement Learning.  (from Katia Sycara)

3. Random Teachers are Good Teachers.  (from Thomas Hofmann)

4. Aligning Text-to-Image Models using Human Feedback.  (from Craig Boutilier, Pieter Abbeel)

5. Change is Hard: A Closer Look at Subpopulation Shift.  (from Dina Katabi)

6. AlpaServe: Statistical Multiplexing with Model Parallelism for Deep Learning Serving.  (from Zhifeng Chen)

7. Diverse Policy Optimization for Structured Action Space.  (from Hongyuan Zha)

8. The Geometry of Mixability.  (from Robert C. Williamson)

9. Does Deep Learning Learn to Abstract? A Systematic Probing Framework.  (from Nanning Zheng)

10. Sequential Counterfactual Risk Minimization.  (from Julien Mairal)

文中关于AI,模型的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《一块GPU跑ChatGPT体量模型,AI绘图又一神器ControlNet》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
你会让ChatGPT控制你的智能家居吗?你会让ChatGPT控制你的智能家居吗?
上一篇
你会让ChatGPT控制你的智能家居吗?
我用ChatGPT写神经网络:一字不改,结果竟然很好用
下一篇
我用ChatGPT写神经网络:一字不改,结果竟然很好用
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    29次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    40次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    59次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    49次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    53次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码