医疗保健领域成功实施人工智能的挑战
在科技周边实战开发的过程中,我们经常会遇到一些这样那样的问题,然后要卡好半天,等问题解决了才发现原来一些细节知识点还是没有掌握好。今天golang学习网就整理分享《医疗保健领域成功实施人工智能的挑战》,聊聊,希望可以帮助到正在努力赚钱的你。
近年来,人工智能(AI)和机器学习(ML)受到了广泛的关注,因为它们有可能在医疗保健服务中设置新的范式。据说机器学习将改变医疗服务的许多方面,放射学和病理学最先利用这项技术的专业之一。
未来几年,医学成像专业人员将能够使用快速扩展的人工智能诊断工具包,用于检测、分类、分割和提取定量成像特征。其将最终导致准确的医疗数据解释、增强诊断过程和改善临床结果。深度学习(DL)和其他人工智能方法的进步在支持临床实践提高精确度和生产力方面表现出了效力。
人工智能应用于医疗保健的障碍
尽管人工智能可以通过自动化集成增强医疗保健和诊断过程的能力,但仍存在一些挑战。注释数据的缺乏使得深度学习算法的训练非常困难。此外,黑盒特性导致了深度学习算法结果的不透明性。在将人工智能纳入医疗工作流程时,临床实践面临着重大挑战。
在医疗实践中成功实施人工智能的主要挑战如下:
- 数据共享的道德和法律问题
- 培训医疗保健从业者和患者操作复杂的AI模型
- 管理战略变革以将人工智能创新付诸实践
1、阻碍AI开发者访问高质量数据集的道德和法律问题
无论是在医学成像中集成人工智能,还是使用深度学习技术来操纵临床诊断程序,高质量的医疗保健数据集都是成功的关键。当我们试图找出开发医疗保健AI模型的关键障碍时,发现道德和法律问题迄今为止一直是开发AI驱动的机器学习模型的最大障碍。
由于患者的健康信息为隐私和机密信息,受法律保护,医疗保健提供者必须遵守严格的隐私和数据安全政策。然而,这使医疗保健从业人员承担不向任何第三方提供数据的道德和法律义务。因此阻碍了AI开发人员访问高质量的数据集,为医疗保健机器学习模型开发AI训练数据。
除了现有法律的模糊性和与组织间共享数据相关的挑战之外,人工智能系统的设计和实施的责任以及允许的范围出现了不确定性,从而引发了法律和道德问题。
2、培训医疗保健从业者和患者使用复杂的AI模型
融入人工智能系统可以在不影响质量的前提下提高医疗效率,从而让患者获得更好、更个性化的护理。通过使用智能高效的人工智能系统,可以简化和改进调查、评估和治疗。然而,在医疗保健领域实施人工智能具有挑战性,因为其需要对用户友好,并为患者和医疗保健专业人员带来价值。
人工智能系统应易于使用、用户友好、自学,且无需大量的先验知识或培训。除了易于使用之外,人工智能系统还应节省时间,且无需不同的数字操作系统来运行。为了让医疗保健从业人员有效地操作人工智能驱动的机器和应用程序,人工智能模型的特性和功能必须简单。
3、管理战略变革以将人工智能创新付诸实践
医疗保健专家指出,由于医疗保健系统的内部战略变化管理能力,在县议会实施人工智能系统将是困难的。为了提升在区域层面与人工智能系统实施战略合作的能力,专家们强调,有必要建立具有熟悉结构和流程的基础设施和合资企业。组织的目标、目的和任务需要通过这一行动来实现,以获得整个组织的持久改进。
医疗保健专业人员只能部分确定组织如何实施变革,因为变革是一个复杂的过程。在实施研究综合框架(CFIR)中,我们需要关注组织能力、环境、文化和领导力,这些都在“内部环境”中发挥作用。维持一个运作良好的组织和交付系统是将创新应用于医疗保健实践的能力的一部分。
通过数据注释将人工智能集成到医学成像中,来增强医疗保健
一种无需通过手术打开身体就能看到身体内部的成像技术被称为医学成像技术(MIT)。人工智能在临床诊断中的应用已经展示了一些最有前景的应用,包括x射线摄影、计算机断层扫描、磁共振成像和超声成像。
机器学习将改善放射科患者的每一步体验。机器学习在医学成像领域的应用最初主要集中在图像分析和开发工具上,以提高放射科医生的效率和生产力。同样的工具通常可以实现更精确的诊断和治疗计划,或有助于减少漏诊,从而改善患者的治疗效果。
人工智能和机器学习在放射学中除了临床决策之外还有更广泛的作用,可以帮助改善整个成像过程中的患者体验——从最初的成像检查计划到诊断和随访的结束。
看看医疗保健系统的趋势,可以看到机器学习的应用已经超越了诊断和医疗成像。其可以增强数据采集过程,确保每次检查的图像质量最高,并协助成像部门有效地最大限度地提高操作性能。
总结
由于医疗行业正处于人工智能推动的新一波技术创新浪潮的曙光中,因此是时候让医疗保健提供者制定将人工智能纳入临床实践的路线图了。随着全球人口的持续增长,医疗保健从业人员必须投资于可以改善患者护理和改变临床工作流程的技术。在能够彻底改变临床过程的技术中,人工智能在医疗保健服务中的应用无疑处于领先地位。
本篇关于《医疗保健领域成功实施人工智能的挑战》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!

- 上一篇
- 深探无监督预训练技术落地 火山语音“算法优化+工程革新”并举

- 下一篇
- 预测分析在医疗保健中的好处
-
- 科技周边 · 人工智能 | 1小时前 |
- 豆包AI总结怎么写?实用技巧分享
- 172浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- DeepSeekAPI调用教程与使用方法
- 370浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- AI一键生成10条短视频,批量制作教程详解
- 453浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- StableDiffusion证件照生成教程
- 327浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 苹果用户快速安装DeepSeek教程
- 196浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 豆包AI助你打造精致妆容技巧分享
- 471浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 即梦AI积分兑换教程全流程详解指南
- 294浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 豆包AIPython数据过滤技巧解析
- 489浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 多模态AI趋势与市场前景解读
- 425浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- CodeWhisperer
- Amazon CodeWhisperer,一款AI代码生成工具,助您高效编写代码。支持多种语言和IDE,提供智能代码建议、安全扫描,加速开发流程。
- 11次使用
-
- 畅图AI
- 探索畅图AI:领先的AI原生图表工具,告别绘图门槛。AI智能生成思维导图、流程图等多种图表,支持多模态解析、智能转换与高效团队协作。免费试用,提升效率!
- 36次使用
-
- TextIn智能文字识别平台
- TextIn智能文字识别平台,提供OCR、文档解析及NLP技术,实现文档采集、分类、信息抽取及智能审核全流程自动化。降低90%人工审核成本,提升企业效率。
- 43次使用
-
- 简篇AI排版
- SEO 简篇 AI 排版,一款强大的 AI 图文排版工具,3 秒生成专业文章。智能排版、AI 对话优化,支持工作汇报、家校通知等数百场景。会员畅享海量素材、专属客服,多格式导出,一键分享。
- 40次使用
-
- 小墨鹰AI快排
- SEO 小墨鹰 AI 快排,新媒体运营必备!30 秒自动完成公众号图文排版,更有 AI 写作助手、图片去水印等功能。海量素材模板,一键秒刷,提升运营效率!
- 38次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览