JS实现二叉搜索树及操作详解
本文深入解析了使用JS实现二叉搜索树(BST)及其常见操作,并着重讲解了BST的核心特性:左子节点小于根节点,右子节点大于根节点。文章详细阐述了插入、删除、查找等关键操作的JS实现方法,并提供了清晰的代码示例。针对删除操作,文章剖析了无子节点、单子节点、双子节点三种情况,并分别给出了相应的解决方案。同时,还讨论了二叉搜索树的平衡问题以及平衡树的实现方法。掌握这些知识点,能帮助开发者更好地理解和应用二叉搜索树这种重要的数据结构。
二叉搜索树插入操作的时间复杂度在平衡情况下为O(log n),最坏情况下为O(n);删除节点的三种情况分别为:无子节点直接删除、单子节点用子节点替代、双子节点用中序后继或前驱值替换后删除该节点。
JS实现二叉搜索树,关键在于理解BST的特性:左子节点小于根节点,右子节点大于根节点。然后,围绕这个特性,实现插入、删除、查找等操作。
解决方案:
class Node { constructor(data) { this.data = data; this.left = null; this.right = null; } } class BinarySearchTree { constructor() { this.root = null; } insert(data) { const newNode = new Node(data); if (this.root === null) { this.root = newNode; } else { this.insertNode(this.root, newNode); } } insertNode(node, newNode) { if (newNode.data < node.data) { if (node.left === null) { node.left = newNode; } else { this.insertNode(node.left, newNode); } } else { if (node.right === null) { node.right = newNode; } else { this.insertNode(node.right, newNode); } } } remove(data) { this.root = this.removeNode(this.root, data); } removeNode(node, data) { if (node === null) { return null; } if (data < node.data) { node.left = this.removeNode(node.left, data); return node; } else if (data > node.data) { node.right = this.removeNode(node.right, data); return node; } else { // data === node.data // case 1: no children if (node.left === null && node.right === null) { node = null; return node; } // case 2: one child if (node.left === null) { node = node.right; return node; } if (node.right === null) { node = node.left; return node; } // case 3: two children // find the minimum node in the right subtree const aux = this.findMinNode(node.right); node.data = aux.data; node.right = this.removeNode(node.right, aux.data); return node; } } findMinNode(node) { let current = node; while (current && current.left !== null) { current = current.left; } return current; } inorder(node = this.root, callback) { if (node) { this.inorder(node.left, callback); callback(node.data); this.inorder(node.right, callback); } } preorder(node = this.root, callback) { if (node) { callback(node.data); this.preorder(node.left, callback); this.preorder(node.right, callback); } } postorder(node = this.root, callback) { if (node) { this.postorder(node.left, callback); this.postorder(node.right, callback); callback(node.data); } } search(data) { return this.searchNode(this.root, data); } searchNode(node, data) { if (node === null) { return false; } if (data < node.data) { return this.searchNode(node.left, data); } else if (data > node.data) { return this.searchNode(node.right, data); } else { return true; } } } // Example Usage: const bst = new BinarySearchTree(); bst.insert(11); bst.insert(7); bst.insert(15); bst.insert(5); bst.insert(9); bst.insert(13); bst.insert(20); console.log("Inorder traversal:"); bst.inorder(bst.root, (data) => console.log(data)); // Output: 5 7 9 11 13 15 20 console.log("Search for 9:", bst.search(9)); // Output: true console.log("Search for 2:", bst.search(2)); // Output: false bst.remove(7); console.log("Inorder traversal after removing 7:"); bst.inorder(bst.root, (data) => console.log(data)); // Output: 5 9 11 13 15 20
二叉搜索树的插入操作的时间复杂度是多少?
插入操作的时间复杂度取决于树的结构。在最佳情况下(树是平衡的),时间复杂度为O(log n),其中n是树中节点的数量。在最坏情况下(树是不平衡的,类似于链表),时间复杂度为O(n)。 实际情况往往介于两者之间,但平衡树的插入操作通常性能更好。
如何在JS中实现二叉搜索树的平衡?
平衡二叉搜索树(例如AVL树、红黑树)是为了解决普通二叉搜索树在最坏情况下性能退化的问题。 实现平衡的关键在于维护树的平衡状态,并在插入和删除节点时进行必要的旋转操作。
AVL树: AVL树通过跟踪每个节点的平衡因子(左子树高度 - 右子树高度)来维护平衡。平衡因子必须始终为 -1、0 或 1。如果插入或删除操作导致节点的平衡因子超出此范围,则执行旋转操作(左旋或右旋)来恢复平衡。 实现AVL树需要额外的代码来计算高度和执行旋转操作。
红黑树: 红黑树使用颜色(红色或黑色)来标记节点,并遵循一组规则来确保树的平衡。这些规则包括:根节点是黑色的,所有叶子节点(NIL节点)都是黑色的,红色节点的子节点必须是黑色的,从任何节点到其所有叶子节点的路径都包含相同数量的黑色节点。 红黑树的插入和删除操作比AVL树更复杂,但通常具有更好的性能。
虽然手动实现AVL树或红黑树可以更深入地理解平衡二叉搜索树的原理,但也可以考虑使用现有的库。
二叉搜索树删除节点的三种情况分别是什么?
删除操作稍微复杂一些,需要考虑三种情况:
要删除的节点没有子节点(叶子节点): 直接将该节点从树中移除即可。 将父节点的相应指针(left 或 right)设置为
null
。要删除的节点只有一个子节点: 将该节点从树中移除,并将其子节点连接到其父节点。 用子节点替换要删除的节点,更新父节点的指针。
要删除的节点有两个子节点: 这种情况比较复杂。 通常有两种策略:
- 找到该节点的中序后继节点(右子树中的最小节点): 将后继节点的值复制到要删除的节点,然后从右子树中删除后继节点。 由于后继节点是右子树中的最小节点,它要么是叶子节点,要么只有一个右子节点,因此删除后继节点会简化为前面两种情况之一。
- 找到该节点的中序前驱节点(左子树中的最大节点): 类似于后继节点方法,将前驱节点的值复制到要删除的节点,然后从左子树中删除前驱节点。
选择哪种策略通常取决于具体的实现和性能考虑。 使用后继节点方法更常见。
今天关于《JS实现二叉搜索树及操作详解》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

- 上一篇
- 完美万词王会员开通步骤详解

- 下一篇
- 双击运行Python脚本的设置教程
-
- 文章 · 前端 | 8分钟前 |
- JavaScript中Symbol.asyncIterator用法详解
- 253浏览 收藏
-
- 文章 · 前端 | 13分钟前 | CSS 优化 transform perspective 文字3D立体效果
- CSS33D文字效果实现教程
- 252浏览 收藏
-
- 文章 · 前端 | 15分钟前 |
- HTML设置页面标题方法及title标签位置
- 305浏览 收藏
-
- 文章 · 前端 | 18分钟前 |
- 网页背景怎么改?教你添加背景色和图片
- 128浏览 收藏
-
- 文章 · 前端 | 19分钟前 |
- HTML属性是什么?如何设置标签属性?
- 176浏览 收藏
-
- 文章 · 前端 | 24分钟前 |
- HTML表单记住密码设置方法
- 217浏览 收藏
-
- 文章 · 前端 | 28分钟前 | CSS 字体 line-height vertical-align 中文与藏文混排
- 中藏文混排CSS实现方法
- 361浏览 收藏
-
- 文章 · 前端 | 30分钟前 |
- 表单JSON提交方法全解析
- 164浏览 收藏
-
- 文章 · 前端 | 48分钟前 |
- JS图片懒加载实现方法全解析
- 385浏览 收藏
-
- 文章 · 前端 | 52分钟前 | HTML表单 form标签 action属性 method属性 GET/POST方法
- HTML表单怎么创建?form标签作用解析
- 409浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 203次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 207次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 204次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 210次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 228次使用
-
- 优化用户界面体验的秘密武器:CSS开发项目经验大揭秘
- 2023-11-03 501浏览
-
- 使用微信小程序实现图片轮播特效
- 2023-11-21 501浏览
-
- 解析sessionStorage的存储能力与限制
- 2024-01-11 501浏览
-
- 探索冒泡活动对于团队合作的推动力
- 2024-01-13 501浏览
-
- UI设计中为何选择绝对定位的智慧之道
- 2024-02-03 501浏览