附代码,ChatGPT接入飞书详细步骤
科技周边小白一枚,正在不断学习积累知识,现将学习到的知识记录一下,也是将我的所得分享给大家!而今天这篇文章《附代码,ChatGPT接入飞书详细步骤》带大家来了解一下##content_title##,希望对大家的知识积累有所帮助,从而弥补自己的不足,助力实战开发!
最近ChatGPT大火,boss也蠢蠢欲动要求我们把ChatGPT接入飞书,经过一上午的研究,终于注册成功并且实现了飞书机器人对接到ChatGPT。
下面给大家分享一下接入飞书的详细步骤。
如何接入飞书
飞书与chatgpt的交互如下,我们的自定义服务就是充当一个中间人的角色,进行消息的转发。
创建飞书机器人
1,进入飞书开放平台,选择创建企业自建应用。
2,创建完应用以后,点击进入应用,添加机器人。
3,给机器人配置消息相关的权限,如果不确定需要什么权限,可以先全部开通。
4,配置事件订阅。事件订阅需要先开发一个接口供飞书验证。接口需要可以公网访问。
这个接口的代码可以参考如下:
@PostMapping(value = "/message") public FeishuEventDTO message(@RequestBody String body) { log.info("收到消息:{}", body); FeishuEventParams feishuEventParams = JSON.parseObject(body, FeishuEventParams.class); FeishuEventDTO eventDTO = new FeishuEventDTO(); eventDTO.setChallenge(feishuEventParams.getChallenge()); return eventDTO; } @Data public class FeishuEventParams { private String challenge; private String token; private String type; } @Data public class FeishuEventDTO { private String challenge; }
有一点需要注意的是,这个校验接口和下面接收飞书消息的接口是同一个地址,但是消息体不一样。
也就是说校验接口是一次性的,校验完之后需要对这个接口进行改造。
我们先将这个接口发布到一个可以公网访问的项目中,比如接口地址是
http://xx.xx.xx.xx/xx/xx/message,将其填写到飞书中保存,飞书如果可以成功保存就没问题了。
OK,到这里飞书的配置基本搞定了,下面就是我们需要进行处理的逻辑了。
对接逻辑及实现
先说一下我司对接的大致逻辑,供大家参考。
用户发送消息到飞书之后,飞书会将消息转发到我们自己的服务上。
但是这里会存在一个问题,就是当多个用户并发发起会话时,或者一个大群里很多人都在@我们的机器人时,我们需要记住每一个人的回话,在chatgpt查询到结果后,准确的回复这个人。
由于我司目前也是用于内部测试不想实现太复杂,所以我们采用的思路是:每一个用户的会话转发到我们的服务上时,先将会话内容保存到一个全局的ConcurrentLinkedQueue队列中,然后启动一个线程,不停的消费这个队列。
队列的泛型是一个提前构造好的对象,这个对象保存着当前消息的消息id,发送人,提问内容等。
每消费一个对象,就将对象的提问内容发送到chatgpt,获取响应结果以后,调用飞书提供的会话回复接口去回复用户。(如果并发量比较大,这里可以搞成异步的)。
好了,大致思路就说到这,我们看一下具体的代码。
1,打开我们的项目,引入chatgpt提供的jar。
<dependency><groupid>com.theokanning.openai-gpt3-java</groupid><artifactid>service</artifactid><version>0.10.0</version></dependency>
2,重写上面的校验接口,改造成接收飞书消息。(接口路径不要变)
@Slf4j @RestController @RequestMapping(value = "/query") public class QureyController { public static ConcurrentLinkedQueue<feishuresponse> consumer = new ConcurrentLinkedQueue(); @PostMapping(value = "/message") public String message(@RequestBody String body) { log.info("收到飞书消息:{}", body); JSONObject jsonObject = JSONObject.parseObject(body); JSONObject header = jsonObject.getJSONObject("header"); String eventType = header.getString("event_type"); if ("im.message.receive_v1".equals(eventType)) { JSONObject event = jsonObject.getJSONObject("event"); JSONObject message = event.getJSONObject("message"); String messageType = message.getString("message_type"); if ("text".equals(messageType)) { String messageId = message.getString("message_id"); String content = message.getString("content"); JSONObject contentJson = JSON.parseObject(content); String text = contentJson.getString("text"); FeishuResponse feishuResponse = new FeishuResponse(); feishuResponse.setMessageId(messageId); feishuResponse.setQuery(text); log.info("投递用户消息,{}", JSON.toJSON(feishuResponse)); consumer.add(feishuResponse); } else { log.info("非文本消息"); } } return "suc"; } }</feishuresponse>
FeishuResponse的结构如下。
@Data public class FeishuResponse { private String messageId; private String query; }
3,写一个任务线程。
@Slf4j public class AutoSendTask implements Runnable { //你的chatgpt的key public static final String token = ""; public static OpenAiService openAiService = null; static { openAiService = new OpenAiService(token, Duration.ofSeconds(60)); } @Override public void run() { while (true) { try { FeishuResponse poll = consumer.poll(); if (poll == null) { log.info("no query,sleep 2s"); TimeUnit.SECONDS.sleep(2); } else { String query = this.query(poll.getQuery()); this.reply(poll, query); } } catch (InterruptedException e) { log.error("Thread exception...", e); } } } private String query(String q) { log.info("开始提问:{}", q); CompletionRequest completionRequest = CompletionRequest.builder() .prompt(q) .model("text-davinci-003") .maxTokens(2048) .echo(false) .build(); StringBuilder sb = new StringBuilder(); CompletionResult completion = openAiService.createCompletion(completionRequest); log.info("q:{},获取响应:{}", q, JSON.toJSONString(completion)); completion.getChoices().forEach(v -> { sb.append(v.getText()); }); String rs = sb.toString(); if (rs.startsWith("?")) { rs = rs.replaceFirst("?", ""); } if (rs.startsWith("nn")) { rs = rs.replaceFirst("nn", ""); } log.info("格式化后的rs:{}", rs); return rs; } private String reply(FeishuResponse poll, String rs) { JSONObject params = new JSONObject(); params.put("uuid", RandomUtil.randomNumbers(10)); params.put("msg_type", "text"); JSONObject content = new JSONObject(); content.put("text", rs); params.put("content", content.toJSONString()); String url = String.format("https://open.feishu.cn/open-apis/im/v1/messages/%s/reply", poll.getMessageId()); String tenantAccessToken = FeishuUtils.getTenantAccessToken(); String body = null; try (HttpResponse authorization = HttpUtil.createPost(url) .header("Authorization", "Bearer " + tenantAccessToken) .body(params.toJSONString()) .execute()) { body = authorization.body(); } return body; } }
获取飞书token的工具类如下:
@Slf4j public class FeishuUtils { public static final String tokenUrl = "https://open.feishu.cn/open-apis/auth/v3/app_access_token/internal/"; //构建一个cache 缓存飞书的token static Cache<string string> tokenCache = CacheBuilder.newBuilder().expireAfterWrite(Duration.ofSeconds(3500)).build(); //这个是飞书应用的appid和key,可以在创建的飞书应用中找到 public static final String appId = ""; public static final String appKey = ""; public static String getTenantAccessToken() { String token = null; try { token = tokenCache.get("token", () -> { JSONObject params = new JSONObject(); params.put("app_id", appId); params.put("app_secret", appKey); String body; try (HttpResponse execute = HttpUtil.createPost(tokenUrl) .body(params.toJSONString()).execute()) { body = execute.body(); } log.info("获取飞书token:{}", body); if (StrUtil.isNotBlank(body)) { String tenantAccessToken = JSON.parseObject(body).getString("tenant_access_token"); tokenCache.put("token", tenantAccessToken); return tenantAccessToken; } return null; }); } catch (ExecutionException e) { throw new RuntimeException(e); } return token; } }</string>
4,启动线程类即可。
最后,出于隐私,chatgpt群会话的效果就不展示了,展示一下直接对话机器人的效果吧。
最后
由于我们引入chatgpt也只是抱着尝试的态度,所以代码相对也比较粗糙,如果有哪里写的不好的地方,还望大家海涵。
文中代码还额外引入的jar有:guava、hutool-all、fastjson。
今天关于《附代码,ChatGPT接入飞书详细步骤》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于ChatGPT,飞书的内容请关注golang学习网公众号!

- 上一篇
- 对于AIGC,李飞飞有这些看法|斯坦福HAI观点报告

- 下一篇
- OpenAI发布ChatGPT人工智能文本生成检测工具
-
- 科技周边 · 人工智能 | 22分钟前 |
- DeepSeek玩转微博热点,自动追踪生成全攻略
- 106浏览 收藏
-
- 科技周边 · 人工智能 | 23分钟前 |
- 短视频玩家必看!DeepSeek+抖音脚本一键生成超简单
- 454浏览 收藏
-
- 科技周边 · 人工智能 | 54分钟前 |
- Audacity+DeepSeek实战!手把手教你智能剪辑音频
- 476浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 三步教程!用豆包AI轻松制作九宫格职场表情包
- 136浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 保姆级教程!五分钟搞定DeepSeek+钉钉部署,办公效率提升两倍!
- 340浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- Midjourney+DeepSeek,AI作图&文案创作超强组合来袭!
- 271浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 谷歌发布GeminiDiffusion:全新文本扩散模型来袭
- 167浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- DeepSeekAI一键生成小红书爆款图,效率提升10倍!告别手动P图
- 494浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- DeepSeek+有道双剑合璧,多语言文档翻译润色全攻略
- 462浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 剪映xDeepSeek教程:手把手教你快速做出爆款短视频!
- 414浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 新手必看!通灵义码上手攻略轻松变强
- 368浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 互联网信息服务算法备案系统
- 了解互联网信息服务算法备案系统,掌握如何进行算法备案的详细步骤和要求,确保您的互联网服务合规运营。
- 59次使用
-
- 魔匠AI
- SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
- 104次使用
-
- PPTFake答辩PPT生成器
- PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
- 137次使用
-
- Lovart
- SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
- 266次使用
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 125次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览